ТЕХНОЛОГИЯ РАЗРАБОТКИ ЭКСПЕРТНЫХ СИСТЕМПроцесс разработки промышленной экспертной системы, опираясь на традиционные технологии, можно разделить на шесть более или менее независимых этапов (см.рис.), практически не зависимых от предметной области. Последовательность этапов дана для общего представления о создании идеального проекта. Конечно, последовательность эта не вполне фиксированная. В действительности каждый последующий этап разработки ЭС приносит новые идеи, которые могут повлиять на предыдущие решения и даже привести к их переработке. Именно поэтому многие специалисты по информатике весьма критично относятся к методологии экспертных систем. Они считают, что расходы на разработку таких систем очень большие, время разработки слишком длительное, а полученные в результате программы ложатся тяжелым бременем на вычислительные ресурсы. В целом за разработку экспертных систем целесообразно браться организации, где накоплен опыт по автоматизации рутинных процедур обработки информации, например: Решение таких задач, во-первых, подготавливает высококвалифицированных специалистов по информатике, необходимых для создания интеллектуальных систем, во-вторых, позволяет отделить от экспертных систем неэкспертные задачи. Правильный выбор проблемы представляет, наверное, самую критическую часть разработки в целом. Если выбрать неподходящую проблему, можно очень быстро увязнуть в "болоте" проектирования задач, которые никто не знает, как решать. Неподходящая проблема может также привести к созданию экспертной системы, которая стоит намного больше, чем экономит. Дело будет обстоять еще хуже, если разработать систему, которая работает, но не приемлема для пользователей. Даже если разработка выполняется самой организацией для собственных целей, эта фаза является подходящим моментом для получения рекомендаций извне, чтобы гарантировать удачно выбранный и осуществимый с технической точки зрения первоначальный проект. При выборе области применения следует учитывать, что если знание, необходимое для решения задач, постоянное, четко формулируемое и связано с вычислительной обработкой, то обычные алгоритмические программы, по всей вероятности, будут самым целесообразным способом решения проблем в этой области. Экспертная система ни в коем случае не устранит потребность в реляционных базах данных, статистическом программном обеспечении, электронных таблицах и системах текстовой обработки. Но если результативность задачи зависит от знания, которое является субъективным, изменяющимся, символьным или вытекающим частично из соображений здравого смысла, тогда область может обоснованно выступать претендентом на экспертную систему. Приведем некоторые факты, свидетельствующие о необходимости разработки и внедрения экспертных систем: Подходящие задачи имеют следующие характеристики: Обычно экспертные системы разрабатываются путем получения специфических знаний от эксперта и ввода их в систему. Некоторые системы могут содержать стратегии одного индивида. Следовательно, найти подходящего эксперта - это ключевой шаг в создании экспертных систем. В процессе разработки и последующего расширения системы инженер по знаниям и эксперт обычно работают вместе. Инженер по знаниям помогает эксперту структурировать знания, определять и формализовать понятия и правила, необходимые для решения проблемы. Во время первоначальных бесед они решают, будет ли их сотрудничество успешным. Это немаловажно, поскольку обе стороны будут работать вместе по меньшей мере в течение одного года. Кроме них в коллектив разработчиков целесообразно включить потенциальных пользователей и профессиональных программистов. Предварительный подход к программной реализации задачи определяется исходя из характеристик задачи и ресурсов, выделенных на ее решение. Инженер по знаниям выдвигает обычно несколько вариантов, связанных с использованием имеющихся на рынке программных средств. Окончательный выбор возможен лишь на этапе разработки прототипа. После того как задача определена, необходимо подсчитать расходы и прибыли от разработки экспертной системы. В расходы включаются затраты на оплату труда коллектива разработчиков. В дополнительные расходы включают стоимость приобретаемого программного инструментария, с помощью которого разрабатывается экспертная система. Прибыль возможна за счет снижения цены продукции, повышения производительности труда, расширения номенклатуры продукции или услуг или даже разработки новых видов продукции или услуг в этой области. Соответствующие расходы и прибыли от системы определяются относительно времени, в течение которого возвращаются средства, вложенные в разработку. На современном этапе большая часть фирм, развивающих крупные экспертные системы, предпочли разрабатывать дорогостоящие проекты, приносящие значительные прибыли. Наметились тенденции разработки менее дорогостоящих систем, хотя и с более длительным сроком возвращаемости вложенных в них средств, так как программные средства разработки экспертных систем непрерывно совершенствуются. После того как инженер по знаниям убедился, что: он составляет план разработки. План определяет шаги процесса разработки и необходимые затраты, а также ожидаемые результаты. Объем прототипа - несколько десятков правил, фреймов или примеров. На рисунке изображены шесть стадий разработки прототипа и минимальный коллектив разработчиков, занятых на каждой из стадий. Приведем краткую характеристику каждой из стадий, хотя эта схема представляет грубое приближение к сложному итеративному процессу. Хотя любое теоретическое разделение бывает часто условным, осознание коллективом разработчиков четких задач каждой стадии представляется целесообразным. Роли разработ- чиков (эксперт, программист, пользователь и аналитик) являются постоянными на протяжении всей разработки. Совмещение ролей нежелательно. Сроки приведены условно, так как зависят от квалификации специалистов и особенностей задачи. Идентификация проблемы - знакомство и обучение коллектива разработчиков, а также создание неформальной формулировки проблемы. Средняя продолжительность 1 - 2 недели. Извлечение знаний - получение инженером по знаниям наиболее полного представления о предметной области и способах принятия решения в ней. Средняя продолжительность 1 - 3 месяца. Концептуализация знаний - разработка неформального описания зманий о предметной области в виде графа, таблицы, диаграммы или текста, которое отражает основные концепции и взаимосвязи между понятиями предметной области. дели Такое описание называется полем знаний. Средняя продолжительность этапа 2-4 недели. Формализация знаний - разработка базы знаний на языке, который, с одной стороны, соответствует структуре поля знаний, а с другой - позволяет реализовать прототип системы на следующей стадии программной реализации. Все чаще на этой стадии используется симбиоз языков представления знаний, например, в системе ОМЕГА - фреймы + семантические сети + полный набор возможностей языка исчисления предикатов. Средняя продолжительность 1 - 2 месяца. Реализация - разработка программного комплекса, демонстрирующего жизнеспособность подхода в целом. Чаще всего первый прототип отбрасывается на этапе реализации действующей ЭС. Средняя продолжительность 1 - 2 месяца. Тестирование - выявление ошибок в подходе и реализации прототипа и выработка рекомендаций по доводке системы до промышленного варианта. Средняя продолжительность 1 - 2 недели. Если первоначально выбранные объекты или свойства оказываются неподходящими, их необходимо изменить. Можно сделать оценку общего числа эвристических правил, необходимых для создания окончательного варианта экспертной системы. Иногда при разработке промышленной системы выделяют дополнительные этапы для перехода: демонстрационный прототип - исследовательский прототип - действующий прототип - промышленная система. Однако чаще реализуется плавный переход от демонстрационного прототипа к промышленной системе, при этом, если программный инструментарий выбран удачно, необязательна перепись другими программными средствами. Понятие же коммерческой системы в нашей стране входит в понятие промышленный программный продукт, или промышленной ЭС в этой работе (табл.). Основное на третьем этапе заключается в добавлении большого числа дополнительных эвристик. Эти эвристики обычно увеличивают глубину системы, обеспечивая большее число правил для трудноуловимых аспектов отдельных случаев. В то же время эксперт и инженер по знаниям могут расширить охват системы, включая правила, управляющие дополнительными подзадачами или дополнительными аспектами экспертной задачи (метазнания). После установления основной структуры ЭС инженер по знаниям приступает к разработке и адаптации интерфейсов, с помощью которых система будет общаться с пользователем и экспертом. Необходимо обратить особое внимание на языковые возможности интерфейсов, их простоту и удобство для управления работой ЭС. Система должна обеспе- чивать пользователю возможность легким и естественным образом спрашивать непонятное, приостанавливать работу и т.д. В частности, могут оказаться полезными графические представления. На этом этапе разработки большинство экспертов узнают достаточно о вводе правил и могут сами вводить в систему новые правила. Таким образом начинается процесс, во время которого инженер по знаниям передает право собственности и контроля за системой эксперту для уточнения, детальной разработки и обслуживания. На этом этапе осуществляется стыковка экспертной системы с другими программными средствами в среде, в которой она будет работать, и обучение людей, которых она будет обслуживать. Иногда это означает внесение существенных изменений. Такое изменение требует непременного вмешательства инженера по знаниям или какого-либо другого специалиста, который сможет модифицировать систему. Под стыковкой подразумевается также разработка связей между экспертной системой и средой, в которой она действует. Когда экспертная система уже готова, инженер по знаниям должен убедиться в том, что эксперты, пользователи и персонал знают, как эксплуатировать и обслуживать ее. После передачи им своего опыта в области информационной технологии инженер по знаниям может полностью предоставить ее в распоряжение пользователей. Для подтверждения полезности системы важно предоставить каждому из пользователей возможность поставить перед ЭС реальные задачи, а затем проследить, как она выполняет эти задачи. Чтобы система была одобрена, необходимо представить ее как помощника, освобождающего пользователей от обременительных задач, а не как средство их замещения. Стыковка включает обеспечение связи ЭС с существующими базами данных и другими системами на предприятии, а также улучшение системных факторов, зависящих от времени, чтобы можно было обеспечить ее более эффективную работу и улучшить характеристики ее технических средств, если система работает в необычной среде (например, связь с измерительными устройствами). Пример. Успешно состыкована со своим окружением система PUFF - экспертная система для диагностики заболеваний легких. После того, как PUFF была закончена и все были удовлетворены ее работой, систему перекодировали с LlSPa на Бейсик. Затем систему перенесли на ПК, которая уже работала в больнице. В свою очередь, эта ПК была связана с измерительными приборами. Данные с измерительных приборов сразу поступают в ПК. PUFF обрабатывает зги данные и печатает рекомендации для врача. Врач в принципе не взаимодействует с PUFF. Система полностью интегрирована со своим окружением - она представляет собой интеллектуальное расширение аппарата исследования легких, который врачи давно используют. Пример. Другая система, которая хорошо функционирует в своем окружении, - CAT-1 - экспертная система для диагностики неисправностей дизелей локомотивов. Эта система была разработана также на LISPe, а затем переведена на FORTH, чтобы ее можно было более эффективно использовать в различных локомотивных цехах. Мастер по ремонту запрашивает систему: определить возможные причины неисправности дизеля. Система связана с видеодиском, с помощью которого мастеру дают визуальные объяснения и подсказки относительно более подробных проверок, которые ему нужно сделать. Кроме того, если оператор не уверен в том, как устранить неисправность, система предоставляет ему обучающие материалы, которые фирма подготовила предварительно, и показывает ему на видеотерминале. Таким образом, мастер по ремонту может с помощью экспертной системы диагностировать проблему, найти тестовую процедуру, которую он должен использовать, получить на дисплее объяснение, как провести тест, или получит инструкции о том, как справиться с возникшей проблемой. Пример. Удачным примером ЭС, внедренной таким образом, является XCON I (R1) - ЭС, которую фирма DEC использует для комплектации ЭВМ семейства VAX. Одаа из ключевых проблем, с которой столкнулась фирма DEC, - необходимость постоянного внесения изменений для новых версий оборудования, новых спецификаций и т.д. Для этой цели XCON поддерживается в программной среде OPS5. |
Хотите видеть на нашем сайте больше статей? Кликните Поделиться в социальных сетях! Спасибо!
Обратите внимание полезная информация.
Робототехника для каждого. 2024г.