25.12.2010, 10:50
Автор: Владимир Николаевич Бусленко
Издатель: Серия "Эврика"
Размер: 400k.
Рассказ: Фантастика
Стр. 1 : Стр. 2 : Стр. 3 : Стр. 4 : Стр. 5 : Стр. 6 : Страница 7 : Стр. 8 : Стр. 9 : ния, впервые можно будет назвать современными предприятиями", утверждают организаторы производства. Как это без движения? Давайте заставим материалы все время двигаться, добьемся ли мы звания современного завода? Нет! Что же это за проблема?
Оказывается, очень серьезная.
Время, затрачиваемое сейчас на предприятии на переработку материалов и обработку деталей, составляет всего лишь от 1 до 2,5 процента общего времени, протекающего от получения заказа до отгрузки готовой продукции. Большая часть времени уходит на перемещение материалов или на то, что они лежат без движения на полу. Утверждают, что, в свою очередь, и из этого мизерного времени обработки и сборки время действительной обработки на станках составляет порядка 15-20 процентов. Пожалуй, специалисты, которые сократят время нахождения материалов без обработки, впервые создадут современное предприятие. Естественно, мощный рычаг процесса сокращения потерь времени - комплексная роботизация.
Роботизация позволяет успешно бороться и с пресловутой "незавершенкой". По данным американских специалистов, 95 процентов своего времени заготовка проводит в ожидании очередной обработки или в транспортировке, а из того, что остается, то есть из пяти процентов, сам процесс обработки на станке занимает менее 30 процентов. Таким образом, для непосредственного изготовления детали используются лишь 1,5 процента времени нахождения ее на заводе. Поэтому, например, одним из центральных элементов японской производственной философии служит концепция "делать все вовремя".
Речь идет о системе, при которой материалы и компоненты доставляются в цехи лишь по мере надобности, а не накапливаются там. При этом достигается существенная экономия, так как обычно одна треть заводских площадей используется для хранения материалов и продукции.
Наконец, рассмотрим последний "нечеловеческий" фактор.
Сегодня мы нередко сталкиваемся с ситуацией, когда человек в силу своих ограниченных физических и психических качеств становится тормозом на пути развития производства, вынуждает оплачивать свое присутствие у печи или в цехе круглой суммой на создание приемлемых условий труда. Роботизация снимает эти ограничения и тем самым открывает пути к качественным преобразованиям в сфере производства, В цехах "безлюдного" завода можно установить станки, не нуждающиеся в эстетическом оформлении, без всяких гладких обводов, которые так "радуют глаз". Эго почти на треть сократит себестоимость станков. Понадобится значительно меньше металла, пластмасс, других материалов. Оператор, удаленный от станка, будет находиться в комфортабельных условиях, станки тогда можно располагать прямо на полу, а не поднимать их на "уровень человека", на что сейчас идет немало металла.
В автоматическом цехе можно не только снизить общие чисто человеческие требования к эстетическому оформлению, но и к воздушной среде цеха, существенно сократить и реорганизовать его площадь и объем. Такой цех совсем не обязательно не только проветривать (вспомним дорогостоящую систему вентиляторов), но и освещать - ведь робот может использовать ультразвуковое или инфракрасное зрение.
Все это приведет к резкому сокращению затрат и сроков строительства, сэкономит от 25 до 40 процентов цемента, железобетона, металлоконструкций, электроэнергии и других ресурсов. Резкое сокращение числа рабочих и служащих предприятия уменьшит затраты на соцкультбыт и другие элементы инфраструктуры, как правило, превышающие затраты на строительство предприятий в несколько раз.
Подобный завод-робот можно просто отключить, как пылесос или радиоприемник, когда в нем нет нужды, и снова включить - когда нужда появится. Так на производственную сцену стали выходить участки, цехи и заводы, даже относительно названия которых нет пока единого мнения. Вот некоторые примеры разных названий, в сущности, одного и того же: КАПС комплексно-автоматизированная производственная система; ПАЛ производственно-автоматическая линия; ГАП - гибкое автоматическое производство; МАК - механообрабатывающий комплекс; РТК - робототехнический комплекс; ИПС - интегрированная производственная система; ПМП переналаживаемое многономенклатурное производство; ГПС - гибкая производственная система. Последний термин сейчас, пожалуй, понимается и принимается всеми и более или менее одинаково. И все же всем приведенным выше названиям мы предпочли термин "завод-робот". Что же означает это предпочтение?
Прежде всего такому заводу присуща гибкость, переналаживаемость с одного вида изделия на другой. Вовторых - адаптивность к новым формам управления.
В-третьих - интеллектуальность в проектировании новых изделий, в планировании производства.
Одним из принципов смены поколений роботов является степень участия человека в управлении. Этот принцип с успехом применим и к нашему заводу-роботу.
Завод-робот первого поколения перепрограммировать довольно сложно, каждая его составляющая - свой "орешек" программизма.
Завод-робот второго поколения уже сам отчасти "помогает" себя программировать, он построен из унифицированных блоков технологического и программного обеспечения, управление им централизовано и автоматизировано.
Завод-робот третьего поколения обладает развитым интеллектом, сам проектирует, планирует и управляет производством своих изделий. Сам контролирует точность и свойства инструментов (не затупились ли) и сам подает сигнал на их замену.
Возможна и другая, историческая классификация трех поколений заводов-роботов. Первое поколение характеризуется тем, что на таких предприятиях внедрена массовая автоматизация на базе манипуляторов и станков с числовым программным управлением (ЧПУ). Второе поколение заводы, имеющие совершенные обрабатывающие центры и гибкие транспортные системы. Третье поколение - умное конструирование, планирование и управление при помощи ЭВМ.
Гибкие производственные системы завершают процесс автоматизации промышленных предприятий, начавшийся в 50-х годах. Сначала появились станки с числовым управлением, автоматически выполняющие различные операции в соответствии с закодированными командами на перфоленте. Затем стали привычными частично компьютеризованные системы проектирования и производственные системы, в которых чертежные доски заменены электронно-лучевыми трубками, а перфоленты - ЭВМ.
Новые гибкие заводы-роботы объединяют все эти элементы. Они состоят из управляемых ЭВМ, центров механообработки, с большой скоростью обрабатывающих сложные детали; роботов, переносящих их и закрепляющих на станках; тележек с дистанционным управлением, на которых доставляются материалы. Все компоненты связаны единой системой электронного управления для каждого этапа производственного процесса, вплоть до автоматической замены отработавших или сломанных инструментов (сверло, фреза, резец...).
По сравнению с теми станочными комплексами, которые они заменяют, гибкие системы подчас кажутся дорогими. Такая система, включающая аппаратуру управления, пять или более центров механообработки и необходимые манипуляторы, может обойтись в несколько миллионов рублей. Даже сравнительно простая система, созданная на базе одного станка скажем, управляемый ЭВМ токарный центр, - стоит несколько тысяч, в то время как обычный станок с цифровым управлением, выполняющий те же операции, стоит около тысячи рублей.
Но прямое сравнение - неудачный критерий для оценки той экономии, которую сулит гибкая автоматизация, даже если принять в расчет выгоды в плане производительности и использования мощностей, которые дает круглосуточная работа предприятия фактически безучастия людей.
Поскольку гибкую производственную систему можно "молниеносно" заново перепрограммировать на производство новых деталей и изделий, то одна система может заменить несколько обычных механических линий, давая большую экономию за счет меньших капиталовложений и производственных площадей.
Самый большой потенциал гибких систем заложен в их способности дешево изготавливать товары небольшими партиями. Автоматические станочные линии при жесткой автоматизации почти не обладают такой гибкостью. Но значение массового производства в настоящее время уменьшается по сравнению с производством партиями от нескольких тысяч экземпляров до одного. Сейчас 75 процентов всех механически обрабатываемых деталей изготавливаются партиями по 50 штук или меньше.
Многие виды сборной продукции - от самолетов и тракторов до крупных ЭВМ - выпускаются такими партиями. В прошлом для производства изделий партиями были нужны станки, рассчитанные лишь на одну функцию. Эти станки в случае перехода к выпуску нового изделия приходилось либо реконструировать, либо заменять. Гибкие системы обеспечивают неслыханную прежде возможность разнообразить продукцию. Можно на одной и той же линии изготавливать различные изделия, правда, из одного "семейства". Так, семейство автомобилей "Жигули" вполне может служить примером массового изделия индивидуального заказа. Представьте себе, что наша гибкая система способна выпустить любую модель от ВАЗ-2101 до ВАЗ-2107. При этом на конвейере друг за другом одновременно движутся к "логическому завершению" совершенно разные модели. Тут и пикап малинового цвета, и "Лада" с правосторонним рулевым колесом на экспорт, и утепленный вариант "Нивы" для районов Севера. Вот принят новый заказ: "первая модель с третьим двигателем". Дается команда программирующему компьютеру, конструктивные особенности модели вводятся в память роботов, складской системы, обрабатывающих и сборочных центров - и автомобиль включается в поток технологической реки так же органично, как маленький ручей впадает в большую реку.
Проходит одна-две "смены" - и готовый индивидуальный заказ предоставляется потребителю.
При негибкой автоматизации наибольшая экономия достигается только при предельной массовости продукции. Использование гибких систем делает возможной аналогичную экономию при самых различных масштабах производства. Они могут производить небольшие партии или даже единичные экземпляры с такой же эффективностью, как производственная линия, предназначаемая для изготовления миллионов одинаковых изделий. Энтузиасты называют эту способность масштабной экономией.
Подобные эффекты существенно изменяют принципы, на которых зиждятся традиционные производственные методы. Нет необходимости в длительной подготовке и наладке производства благодаря беспрецедентной "компьютерной" точности, которую такие системы обеспечивают сразу на каждом этапе производственного процесса - от механической обработки до технического контроля. Появляется гораздо больше возможностей строить новые предприятия: гибкие системы избавляют от "тирании" крупных вложений, допуская строительство небольших заводов, расположенных близко к местам сбыта продукции.
БРИГАДНЫЙ ПОДРЯД РОБОТИЗАЦИИ
Идея группового использования роботов и станков с ЧПУ в едином комплексе принадлежит как бы самим роботам. Начиная с самых первых шагов роботизации выяснилось, что замену производственного рабочего роботом в соотношении "один к одному" вряд ли можно оправдать. Роботу такая замена, грубо говоря, "невыгодна", он не сможет "развернуться во всем блеске" на столь узком "пятачке". Идеально, когда удается поручить роботу обслуживание сразу нескольких станков, агрегатов или прессов, претворив разрозненное оборудование в полностью автоматизированный комплекс, работающий по единой, общей программе. Именно в таких технологических комплексах, как показала практика, один промышленный робот высвобождает в среднем двух-трех рабочих, в два-четыре раза повышает производительность, приблизительно вдвое увеличивает использование оборудования, повышает ритмичность и общую культуру производства.
Подобный робототехнологический комплекс - это и есть своеобразный кирпич, или, точнее, пробный камень на стройплощадке полностью роботизированных цехов или даже заводов. Это не просто дальнейшая автоматизация производства, это качественно новый шаг в развитии промышленности. "Ставка на полностью роботизированные технологии оправдана не только как отдаленная перспектива, но и с позиций сегодняшнего дня.
Именно этот подход должен быть положен в основу нашей стратегии и тактики в области робототехники", - считает профессор Г. Юревич. Это и решение вопроса о том, как и где наиболее эффективно можно использовать роботы и манипуляторы.
Групповое использование роботов дает определенные выгоды с точки зрения их технического обслуживания, подготовки операторов, обеспечения запасными частями.
Применение бригады роботов дает возможность поднять на высшую ступень дело управления, применить комплексное управление от ЭВМ. Стоимость мини-ЭВМ в пересчете на один робот оказывается не столь уж велика.
В перспективе наиболее выгодными могут стать бригады из роботов, где один очувствленный, или интеллектуальный, будет обслуживать несколько простых, более "глупых" собратьев. Но сначала нужно научить роботов общаться друг с другом.
Групповое использование роботов - своеобразный бригадный подряд роботизации - требует решения таких новых и принципиальных вопросов, как организация идеального их взаимодействия, своеобразная социализация поведения, разработка кибернетической "этики" роботов. Вот где опять интенсивно заработал механизм самопознания человека и человечества!
Конечно, фантасты уже заложили несколько весомых кирпичей в фундамент этики роботов, однако проблемы, которые ставит перед нами жизнь, почти всегда оказываются сложнее любой измысленной ситуации. Жизнь фантастичнее фантастики.
Специфика группового управления роботами состоит, говоря профессиональным языком, "в наличии разнообразных пространственных и временных ограничений на движение отдельных манипуляторов". Пространственных - это значит, что рабочие зоны отдельных рук роботов могут пересекаться. Временных - это значит, что движения рук не произвольны, а упорядочены во времени.
Самым тривиальным вариантом группового управления является управление автономно работающими манипуляторами. Здесь каждый робот совершает не связанные ни в пространстве, ни во времени с другими манипуляторами действия. Задача группового управления здесь сводится к известной проблеме распределения вычислительной мощности управляющего компьютера между несколькими пользователями.
Более сложным вариантом группового управления является наложение только временных взаимных связей на действие манипулятора. В простейших случаях эти связи сводятся к установлению определенной последовательности выполнения каждым манипулятором своей индивидуальной операции. Более сложным случаем является синхронизированная параллельная работа манипуляторов.
Следующим этапом на пути усложнения задачи группового управления является совместное выполнение манипуляторами общей работы, требующей взаимной координации их движений в пространстве общей рабочей зоны (например, сборка одного узла двумя манипуляторами). Возможны разные режимы организации такой совместной работы манипуляторов, имеющие глубокие аналогии с человеческим общением: квазиавтономное управление, иерархическое подчинение и равноправное взаимодействие.
В квазиавтономном режиме общее задание, поручаемое бригаде роботов, стараются разбить на такие операции, каждая из которых могла бы выполняться однщи из манипуляторов при учете пространственных и временных ограничений, обеспечивающих взаимную "развязку" движений отдельных роботов.
Другое дело - режим управления с иерархическим подчинением роботов друг другу. Один из роботов является основным - своеобразный бригадир, - а другой работает, оперативно согласовывая с ним все свои движения во времени и пространстве.
Самым высокоорганизованным режимом совместной работы роботов является режим равноправного взаимодействия. Такой режим предполагает оперативный учет дыжений других манипуляторов при управлении каждым в отдельности. Согласование работы отдельных ма нипуляторов и роботов обеспечивается как собственными мини-компьютерами роботов, так и центральным компьютером. Возможны три варианта организации управления.
Децентрализованное групповое управление, когда индивидуальные микрокомпьютеры роботов перекрестно связаны друг с другом.
Централизованное управление группой роботов от одного компьютера.
Комбинированное управление, являющееся обобщением двух первых вариантов.
Впрочем, все эти варианты могут быть программно реализованы в одной ЭВМ при условии достаточной ее вычислительной мощности.
Наиболее гибкой и надежной является комбинированная система управления, включающая в себя центральный компьютер и местные управляющие мини-ЭВМ, связанные с центром и между собой. Централизованное управление менее надежно: сломался главный компьютер, и вся система остановилась. Децентрализованное управление свободно от этого недостатка: выход из строя одного компьютера вызывает лишь отключение одного из роботов, остальные, если могут, продолжают работу. Однако в этом случае сложнее изменять алгоритм взаимодействия роботов, так как необходимо изменять структуру имеющихся связей между отдельными управляющими компьютерами роботов.
В идеале весь робототехнический участок, роботизированный цех и целый завод тоже превратятся в единый организм - настолько слаженный и гармоничный, что мы без натяжки могли бы присвоить этому заводу имя "робот". Нужно сказать, что, хотя идеал такого завода еще только брезжит на горизонте промышленного производства, отдельные лучи восходящего светила роботизации уже пробиваются сквозь тучи противоречивых идей и концепций.
Рассмотрим идею завода-робота японской фирмы "Хиточи ЛТД", уже опробованную на цехе механической обработки валов для мощных экскаваторов. Названа эта концепция "интегрированной производственной системой" (здесь английское слово "integrate" обозначает целостное неразрывное единство множественных элементов).
Основа состоит в объединении всего производственного автоматического оборудования в единую эффективно функционирующую систему посредством иерархической системы управления, реализованной с помощью целой сети современных микро-, мини-, средних и больших компьютеров. Эта система ЭВМ позволяет обеспечить организационно-хозяйственное и технологические управление на основе гибкой интегрированной программы, учитывающей состояние процесса производства.
Такой завод-робот как гигантский айсберг. Его видимая часть - это цех механической обработки валов.
Цех, как и любая подобная система, строится, как из кубиков, из набора фундаментальных элементов. Прежде всего он содержит формообразующие элементы технологии. Это разнообразные станки с ЧПУ, обрабатывающие центры и другое подобное оборудование, которое занято созданием изделий; условное название их функции - "изменение формы". Следующий кирпичик - это транспортные средства, занятые "изменением места", здесь разнообразные конвейеры, электрокары, краны-штабелеры. Кроме изменения места, необходимо осуществлять "изменение позиции". Это сфера эффективного приложения манипуляторов всех видов и поколений, они осуществляют операции переноса, изменения положения, компоновки и сборки. И наконец, то, что формально называется "изменением времени". Сюда относятся разнообразные средства хранения, начиная от питателей, стеллажей и поддонов и кончая автоматизированными многоярусными складами заготовок и готовой продукции.
Есть еще хитрая иерархия электронных средств управления. Каждая единица производственного оборудования - будь то станок, робот или производственная тележка - имеет свой мозг или, на худой конец, мозжечок, а именно: микропроцессор или микрокомпьютер.
Эти "мозги" соединены с помощью специальных каналов передачи информации с более мощными мини-компьютерами цехового уровня. Каждый такой мини-компьютер - "начальник цеха", обеспечивает работу целой группы оборудования, начиная от цехов механической обработки и сборки и кончая автоматизированными испытательными средствами и складами. Все мини-компьютеры объединены между собой быстродействующей связью, обеспечивающей оперативную передачу управляющих данных. И наконец, центральный компьютер, к которому подключены все мини-компьютеры цехов через так называемый "модем". Так и хочется назвать его центральной нервной системой этого организма.
Это то, что можно увидеть на таком заводе-роботе "невооруженным" взглядом. Невидимая же часть айсберга - это мощная, распределенная иерархическая система управления.
Первый уровень управления - управление роботами, станками и элементами транспортной системы. Система действует в полном соответствии с теми принципами, которые мы рассматривали в предыдущих главах этой книги. При выполнении элементарных операций эти единицы оборудования работают как бы квазинезависимо, псевдоавтономно.
Однако в тех случаях, когда они входят во взаимодействие друг с другом, такие вопросы решаются с помощью третейского суда - мини-компьютера более высокого - второго - уровня. Этот мини-компьютер участка или цеха осуществляет обработку всей информации по управлению вверенным ему производством. Он не только планирует работу цеха и контролирует ход выполнения планов, но и осуществляет групповое программно-распределительное (супервизорное) управление промышленными роботами и другим оборудованием.
Именно этот компьютер - "начальник цеха" - принимает от роботов рапорты о выполнении тех или иных производственных операций, сообщения о сбоях и поломках, молниеносно принимает решения, назначает следующую операцию по каждому оборудованию в соответствии с имеющимся планом, блокирует неисправные участки и станки, перераспределяет их функции между другими (соседними) роботами и станками, а в случае необходимости составляет и редактирует новые программы управления роботами и станками с ЧПУ.
Но и этот мощный набор функций бледнеет перед обязанностями центрального компьютера (третий уровень), который занимается вопросами организационнохозяйственного управления производством. Это он реализует выработку графиков загрузки оборудования.
"Мозг" этого "мозга" - математическое обеспечение системного управления - есть не что иное, как комплекс программ, что-то вроде операционной системы, реализующей управление всеми задачами системы: управление материально-производственными запасами (складами), управление станками, управление роботами, управление человеко-машинной связью, календарное, оперативное планирование и т. п. А над всем этим парит на недосягаемой высоте система автоматизации проектирования и технологической подготовки производства.
Это интеллект завода-робота, который "придумывает" новые виды продукции и "продумывает" технологию их изготовления. Такой завод можно смело назвать не только роботом, но и введенным нами для роботов-интеллектуалов именем - кибер.
Какие же черты именно кибера проглядывают в этом заводе-роботе? Эффекторами его являются отдельные станки, роботы и транспорт, воздействующие на производственную окружающую среду. Рецепторы же этого кибера - все те же роботы и станки, их собственные органы чувств, а также их сообщения об окончании отработки отдельных команд операций и целых программ, и наконец, сообщения о сбоях, выходе из строя, ошибках адресации и т. п. Проблема с поиском интеллектуального мозга этого кибера решается просто - им будет центральный компьютер, имеющий связь с оператором "директором" завода. Что касается целесообразного поведения этого кибера на рефлекторном, или же адаптивном, уровне, то степень его интеллектуальности как бы делит возможные конструкции таких заводов на три возрастающих уровня мощности интеллекта, которые удобно представить в виде привычного нам деления поколений.
Обучаемый принцип управления завода-робота первого поколения аналогичен принципу обучения и управления простого робота первого поколения. При переходе к выпуску новых видов продукции квалифицированные операторы осуществляют индивидуальное программирование роботов, станков с ЧПУ, транспорта, склада и т. д.
Управление с обратной связью завода-робота второго поколения обеспечивает не только оперативное реагирование с перестройкой технологического цикла при всевозможных сбоях и поломках, но и централизованное перепрограммирование роботов, станков и прочих элементов технологии с помощью перераспределения заранее заданных и хранящихся в компьютерной памяти программ. Это своеобразный аналог принципа "ситуация реакция". Разумеется, при переходе к совершенно новым изделиям нужно добавлять недостающие программы, то есть расширять набор классов ситуаций.
Адаптивное интеллектуальное управление заводомроботом третьего поколения обеспечивает, кроме всего вышеперечисленного, автоматический переход к выпуску новой продукции. Он осуществляется путем выдачи задания подсистеме проектирования и технологической подготовки производства. Она, в свою очередь, не только проектирует новое изделие и технологию его изготовления, но и создает программы непосредственного управления всеми производственными элементами: роботами, станками, транспортными системами, системами изготовления и замены инструментов, автоматическими хранилищами и т. д. и т. п.
СЕГОДНЯШНИЕ "ЗАВОДЫ БУДУЩЕГО"
"Поколения поколениями, - скажет вдумчивый читатель, - но хорошо бы увидеть хотя бы одну работающую систему, так сказать, ощутить идею в натуре".
Рассмотрим примеры уже работающих систем, подобных или приближающихся к концептуальной схеме завода будущего.
Начнем с прообраза такого робота - обрабатывающего центра. Идея его зиждется на принципе "все делается в одном месте". Обычно процесс производства средней детали состоит из нескольких основных формообразующих операций: сверлильной, токарной, фрезерной, шлифовальной и т. п., и обычная схема изготовления такой детали следующая. Берется четыре станка, каждый из которых выполняет одну какую-либо операцию. Установим эти станки в мало-мальски типовой последовательности. Поставим роботы-манипуляторы, накопители и т. и. - и участок готов. Можно пойти и другим путем. Создать универсальный станок, который об12 В. Бусленко jy ладает целым набором инструментов: несколько десятков сверл и фрез, шлифовальных дисков и т. п. Станок снабжен специальным поворотным столом, жестко закрепляющим деталь, вращающим и подающим ее в разнообразных направлениях. На таком обрабатывающем центре можно одновременно делать несколько операций, например сверлить и фрезеровать. Обрабатывающий центр - прямой потомок станков с ЧПУ - следующее поколение станочного парка.
Если поставить несколько станков типа "обрабатывающий центр", соединить их манипуляторами и транспортной системой, получим робототехнический участок.
Для адекватного управления им нужна современная мини-ЭВМ.
Рассмотрим, например, систему ROTA - FS-200, созданную на станкостроительном комбинате имени 7 Октября в Берлине. В ней магазин накопитель деталей выполнен в виде двух стеллажей, между которыми движется робот-загрузчик. Все восемь станков системы работают согласованно, подчиняясь командам единого вычислительного центра. Каждый станок, кроме того, снабжен собственным устройством автономного управления и роботом-загрузчиком. Этот робот подает заготовки из промежуточных магазинов и возвращает в них обработанные детали, меняет инструмент и элементы оснастки.
Промежуточные магазины играют роль своеобразных контейнеров, в которых детали и инструмент циркулируют по транспортной сети системы, они перемещаются с помощью специального подъемного механизма. А конечной станцией сети является центральный накопитель, устроенный также в виде двух стеллажей, между которыми движется штабелер-погрузчик. Контроль за работой всей системы ведется с центрального пульта управления.
По сравнению с обычным станочным парком такие автоматизированные комплексы позволяют сократить численность обслуживающего персонала на 70 процентов, вдвое уменьшить производственные площади и повысить производительность труда на 300 процентов.
В Болгарии разработан проект автоматизированного производства деталей типа тел вращения. Составной единицей производства является модуль МС-РСД, демонстрировавшийся в действии на выставке в Москва "Болгария - 30 лет по пути социализма". Модуль МС-РСД включает в себя токарный станок модели СЕ062 "Perun" с ЧПУ и автоматической сменой режущего инструмента, манипулятор, специальную тару, несущую партию заранее ориентированных деталей и загрузочную станцию. Манипулятор выполняет загрузочно-разгрузочные операции, имеет грузоподъемность 80 килограммов и перемещается от загрузочной станции к шпинделю станка. Он состоит из салазок, перемещающихся посредством гидромотора параллельно оси шпинделя станка, из загружающих и разгружающих рук, приводимых в движение гидроцилиндрами. Управление осуществляется малой ЭВМ, ИЗОТ-0310.
Болгарскими специалистами разработано также автоматизированное производство для сложнейших корпусных деталей, состоящее из сверлильно-фрезерно-расточных обрабатывающих центров. Особенностью производства является отсутствие склада. Подлежащие обработке заготовки с помощью напольной каретки, перемещающейся по проложенным вдоль ряда станков направляющим рельсам, сразу же поступают в позиции ожидания соответствующих станков.
Внедрение системы "Sistem-2790" на одном из машиностроительных заводов Болгарии позволило при том же количестве рабочих увеличить объем выполненных работ на 50 процентов и сократить продолжительность их выполнения более чем в 1,5 раза. Другой роботизированный участок, ROTA-200, предназначен для централизованного изготовления зубчатых колес с наружным диаметром 60-200 миллиметров партиями по 30- 40 штук. Производительность участка - 200 тысяч деталей в год. Он состоит из двух подсистем: токарной обработки, шлифования баз и протягивания внутреннего профиля, а также обработки зубчатого венца. Восемь станков участка расположены по обе стороны от транспортной складской системы, которую обслуживает штабелер, управляемый от ЭВМ или с пульта. Детали транспортируются по участку в магазинах емкостью по 24 или 48 штук в зависимости от размеров.
Заготовки вручную устанавливаются в специальные патроны и ориентируются по предварительно просверленным отверстиям. Данные о заполненных магазинах вводятся в ЭВМ, после чего штабелер устанавливает их в одну из ячеек в начале транспортной складской системы. Для хранения магазинов с заготовками и обработанными деталями в начале и в конце системы предусмотрены специальные секции по 12 магазинов в два этажа. Работу участка планирует ЭВМ типа РЗОО, которая каждые 7-10 дней рассчитывает предварительную программу работы участка. Непосредственно управляет работой участка малая ЭВМ типа KRS-4100.
В нашей стране наряду с аналогичными разработками осуществляются проекты и более крупных масшта бов, где роботы активнее участвуют в самом процессе производства, осуществляя не только транспортировку, но и сборку и даже контроль изделий. География их весьма обширна, а объем грандиозен. Петрозаводск и Орел, Таллин и Тарту, Смоленск и Тольятти...
Около двухсот автоматических манипуляторов занимаются сборкой часов в объединении "Петродворцовый часовой завод". Это сообщество роботов, создатели которого были удостоены Государственной премии СССР, освободило от монотонной работы 500 человек. На этом предприятии сборку точнейших механизмов для всей годовой программы - а это около четырех миллионов штук наручных часов - взяли на себя автоматические манипуляторы. В результате производительность труди увеличилась в шесть раз, в шесть раз возрос и объем продукции, отмеченной государственным Знаком качества. В корне изменился и характер труда. В сборочном цехе этого завода вы не увидите традиционных конвейеров с рядами склонившихся над ними работниц. Главной фигурой в нем стали наладчики и операторы высокой квалификации, обеспечивающие бесперебойную работу оборудования.
Приборостроение является еще одной отраслью, где комплексная автоматизация привела к созданию роботов-цехов и роботов-участков. Приборостроение, кстати, было первой отраслью, где роботехнические комплексы встретили буквально с распростертыми объятиями.
Ибо никакая другая техника не могла превратить поточные линии в экономичные, быстропереналаживаемые автоматические производства. Приборостроение отличает огромная номенклатура выпускаемых изделий десятки тысяч наименований, - а также большой удельный вес сборки, на которую приходится более половины всех трудоемких операций.
Дольше всех не поддавалась автоматизации транспортировка деталей от агрегата к агрегату, а также их загрузка и выгрузка, поскольку наибольшую сложность при этом представляла "стыковка" роботов с уже установленными в цехах поточными линиями. Тогда-то у проектировщиков и родилась мысль о необходимости создавать такие комплексы, для которых технологическое оборудование проектировалось бы совместно с роботами.
Первой ласточкой среди предприятий подобного рода стал освоенный в орловском производственном объединении "Промприбор" комплекс контроля терморегуляторов для домашних холодильников.
Изготовление деталей терморегулятора, их сборка, настройка, а также пайка, мойка, вакуумная сушка, контроль герметичности, сварка и другие операции, вплоть до окончательной сборки, полностью автоматизированы. Все этапы технологии, объединенные транспортной системой, управлялись комплексом на базе машины М-6000. Загрузку и выгрузку оборудования вели 34 промышленных робота ПР18-2, имеющие четыре степени подвижности и высокую точность позиционирования (+0,1 мм).
Рассчитанный на выпуск трех миллионов приборов в год, этот комплекс высвободил 400 человек и дал годовой экономический эффект 800 тысяч рублей.
Достижение орловских приборостроителей вдохновило их эстонских коллег, которые в 1981 году разработали роботизированный комплекс для изготовления электроизмерительных приборов. За основу приняли робот ПР5-2 с пятью степенями подвижности. В 1981 году на таллинском ПО "Промприбор" внедрена линия сборки, на которой работают восемь роботов. Еще более массовое применение подобного оборудования началось в 1983 году, когда вошел в строй цех по выпуску индикаторов уровня звукозаписи. В его составе действует 20 транспортных модулей и 40 роботов. Это высвободило 700 человек и дает экономический эффект в 23 миллиона рублей.
Создавая переналаживаемые многономенклатурные производства, приборостроители разрабатывают роботизированный участок по изготовлению шестерен для электрических исполнительных механизмов. Участок, состоящий из шести токарных станков с ЧПУ, вертикально-фрезерного станка, пяти зубодолбежиых полуавтоматов, восьми промышленных роботов, двенадцати подъемников-накопителей, вступит в эксплуатацию в 1985 году. Он будет обрабатывать шестерни семи различных диаметров.
Специально для переналаживаемого комплекса приборостроители разрабатывают новый промышленный робот с электроприводом. У него пять степеней подвижности, повышенная точность позиционирования (+0,5 мм), высокие скорости перемещения (до 1 м/с), а также небольшие габариты и вес. Характеристики улучшены благодаря использованию малоинерционных двигателей постоянного тока, волновых редукторов, кодовых фотоэлектрических датчиков. Проходящие сейчас испытания макетного образца робота показали, что его можно будет использовать для сварочных и окрасочных работ.
Сейчас в отрасли разрабатывается оборудование для переналаживаемых сборочных производств. В линии сборки термовентилей, внедренной на Тартуском приборостроительном заводе, уже успешно опробован несинхронный транспортер и обслуживающие его семь промышленных роботов, а также другое оборудование.
Одновременно прорабатывается вариант гибкой переналаживаемой сборочной системы сотового типа для сборки свыше тысячи модификаций манометров. Центральным узлом системы является многоэтажный поворотный магазин, в ячейках которого хранятся заготовки, оснастка, инструмент и готовые изделия. Передачу деталей от магазина к транспортным и технологическим модулям осуществляют промышленные роботы.
Подобная система позволяет лучше использовать объем производственных помещений, допускает она и частичную переналадку производства без полной его остановки.
В настоящее время в чекобсарском ПО "Промприбор" уже действует переналаживаемый робототехнический комплекс (РТК) горячей штамповки для деталей диаметром от 7 до 20 миллиметров. В смоленском ПО "Искра" внедрен РТК трафаретной печати. Во всех случаях переналадка на новый тип заготовки занимает не более одного часа.
В соответствии с принятой в отрасли комплексной программой предусмотрено в одиннадцатой пятилетке создать и внедрить в производство свыше 700 робототехнических комплексов, в которых будут работать около трех тысяч промышленных роботов.
Всего же в отрасли их должно быть внедрено 30 тысяч.
САМОВОСПРОИЗВОДСТВО?!
"Самовоспроизводство" - довольно претенциозное слово, особенно в книге о роботах; и дотошный читатель, видимо, уже насторожился, вытащил из колчана пару стрел-аргументов, натянул лук остроумия и приготовился сражаться за тезис о том, что самовоспроизводство - функция только живой материи. Мы не будем вести спор на эту вечную кибернетическую тему. А просто поведем речь о заводе, на котором роботы делают роботов.
На заводе компании "Фанук", разместившемся в желтых зданиях в сосновом бору близ Фудзиямы, автоматические центры механической обработки и роботы по ночам, как правило, работают без присмотра. Только вспыхивают тусклые голубые сигнальные огоньки, когда автоматические тележки, словно призраки, двигаются в полумраке. Этот завод, один из двух, составляющих фудзиямский комплекс, изготавливает детали для роботов и станков (которые, однако, собираются вручную). За механической обработкой, происходящей на площади в 16 тысяч квадратных метров, наблюдает по ночам один-единственный оператор, следящий за работой машин на дисплее. Когда что-то выходит из строя, он может отключить данный участок, в то время как работа на остальных может продолжаться.
Некоторые специалисты считают фудзиямский комплекс фирмы "Фанук" лишь своего рода витриной. Общая стоимость этого завода составила примерно 32 миллиона долларов, включая стоимость 30 секций механической обработки, состоящих из станков с компьютерным управлением, обслуживаемых роботами, из манипуляторов, переносящих материалы, из мониторов и из программируемого контрольного устройства, координирующего весь процесс. "Фанук" подсчитала, что ей, вероятно, потребовалось бы в десять раз больше капиталовложений, чтобы иметь тот же выход продукции при обычном оборудовании. Кроме того, потребовалось бы в десять раз больше работников. Сейчас их около ста человек. На этом заводе один работник наблюдает за десятью секциями механической обработки; остальные заняты техническим уходом и сборкой. В целом завод примерно в пять раз производительнее, чем такой же завод при обычном оборудовании.
На другой стороне улицы помещаются 60 секций механической обработки. Там же действует 101 робот.
В большом двухэтажном здании ведется автоматическая обработка и сборка. Общий объем продукции - 10 тысяч электромоторов в месяц. Люди здесь работают лишь днем, выполняя обязанности по техническому уходу. Роботы работают всю ночь в тишине, нарушаемой только "вздохами" гидравлических прессов и жужжанием автоматических тележек. На первом этаже этого завода расположены все секции механической обработки и 52 робота. Завод обрабатывает детали примерно 900 типов и размеров партиями от 20 до 1000 комплектов.
После механической обработки детали временно попадают на склад, откуда их потом автоматически извлекают для сборки, производимой на втором этаже.
Фирма "Ямадзаки мэшинери" имеет основанный на использовании роботов завод близ Нагой, изготавливающий детали токарных станков с машинным цифровым управлением, и центры механообработки; последние объединяют несколько металлообрабатывающих станков и автоматические приспособления для замены инструмента. В дневное время на этом заводе занято двенадцать рабочих. По ночам машины продолжают работать под наблюдением лишь одного дежурного оператора.
Обычная система механической обработки аналогичной производственной мощности, по данным этой компании, потребует двести пятнадцать работников и почти в четыре раза больше машин, и, кроме того, для изготовления деталей, которые новый завод выпускает за три дня, потребовалось бы три месяца.
Еще один автоматизированный завод фирмы "Ямадзаки" будет введен в строй в близком будущем. Все шестьдесят пять станков нового завода с машинным управлением и тридцать четыре робота будут связаны между собой с помощью волоконно-оптического кабеля.
Конструкторское бюро, тоже с машинным управлением, находится в главной конторе. Оттуда можно дать заводу команду изготовить требуемые детали, инструмент, рабочие приспособления, закладывая в память ЭВМ названия различных образцов. Требуется лишь нажать несколько кнопок, чтобы пустить всю систему.
На заводе будет занято двести пятнадцать человек вспомогательного персонала. Для выпуска планируемого объема продукции на обычном заводе потребовалось бы две с половиной тысячи человек.
В Западной Европе, которая сильно отстает не только от лидера роботизации Японии, но и от СССР, находящегося на втором месте в мире, также ведутся разработки роботизированных цехов.
Первая такая система вступила в строй в прошлом году в Крюкерке (Англия). Она связывает совокупность механообрабатывающих станков в одну полностью интегрированную производственную ячейку и включает в себя системы с ЧПУ для смены инструментов обработки, управления процессом в реальном масштабе времени и автоматического передвижения обрабатываемых изделий по цеху.
В Колчестере (графство Эссекс) открылся первый в Англии полностью автоматизированный завод, где роботы и ЭВМ делают, по существу, все. Персонал, который там занят, - это горсточка операторов, включающих оборудование и присматривающих, чтобы работа шла гладко.
Результат всего этого - сокращение затрат времени на обработку, уменьшение количества производственных запасов и, само собой разумеется, экономия трудовых затрат.
Завод в Эссексе производит разнообразные шпиндели, шестерни и колеса. Вдоль ленты непрерывного конвейера, по которому перемещаются обрабатываемые заготовки, выстроилась цепочка автоматических станков.
Они загружаются роботами, управляемыми с помощью датчиков, ЭВМ и экранов видеодисплеев.
Такая робототехническая система идеальна для мелкосерийного производства: теперь на складе готовой продукции можно иметь ограниченное число деталей, которые уходят оттуда в течение непродолжительного времени. Упор здесь делается, как и во всех гибких системах, на способность быстро реагировать на изменения конъюнктуры путем изменения количества и ассортимента продукции.
Завод в Колчестере станет, с одной стороны, выпускать товарную продукцию, а с другой - служить в качестве показательной гибкой производственной системы для других фирм.
Несколько машиностроительных предприятий, главным образом аэрокосмической и моторостроительной промышленности, уже ввели в строй свои собственные автоматизированные производства. Однако в отличие ог колчестерского предприятия эти заводы не являются полностью автоматизированными и гибкими производственными системами в подлинном смысле слова.
Фирма "Роллс-Ройс" переоборудует бывшее трамвайное депо в Дерби в автоматический завод по изготовлению турбинных лопаток для двигателей самолета "Боинг-757". Эти двигатели имеют свыше двухсот разновидностей лопаток для турбин. Из-за того, что проводится двухгодичная программа совершенствования двигателей, затраты времени на освоение новой продукции значительны и дорогостоящи. Роботы уменьшат их вдвое.
На заводе этой фирмы работает семь ячеек с роботами. Они соединены между собой конвейером. Там осуществляется пятнадцать этапов обработки турбинных лопаток. Изготовление каждой лопатки обычно занимало шесть минут. Теперь же это время сократилось до сорока пяти секунд, и шесть человек выполняют работу тридцати. К настоящему времени компания повысила выработку на одного работающего на 28 процентов и к 1984 году ставит своей целью ее повышение на 40 процентов.
Аэрокосмичеекая фирма "Нормалэйр-Гэррит" решила строить новый автоматизированный завод в Крюкерне. Там роботы и управляемые микропроцессорами тележки будут приспособлены для транспортировки заготовок по технологическим маршрутам между крупными станками. Отливки и необработанные заготовки заходят в систему с одного конца и выходят оттуда в виде готовой продукции.
По оценке фирмы, выработка, то есть объем произведенной продукции, на одного работающего, которая раньше была обычно на уровне 67 тысяч фунтов стерлингов в год, благодаря автоматизации повысилась до 210 тысяч фунтов стерлингов. Длительность производственного цикла сократилась с четырех месяцев до двух недель, а оборачиваемость складских запасов стала быстрее примерно в шесть раз. Фирма затратила на новый завод миллион фунтов стерлингов, но зато теперь имеет там только двух или трех операторов в каждой смене.
Следующая гибкая система, которая войдет в строй в Великобритании, это СКЭМП. Она начнет работать в начале этого года.
СКЭМП - автоматический токарный агрегат для производства деталей новой модели токарного станка.
Он состоит из девяти машин: двух автокаров, двух обрабатывающих центров для токарной обработки с ЧПУ, зубострогального, зубофрезерного, шлифовального станков, а также станков для развертки отверстий и доводки зубьев шестерен. Заготовки циркулируют по системе, п"- тешествуя на конвейерных тележках. Их загрузку и выгрузку возле каждого пункта обработки будут производить роботы системы "Сиробот".
Каждый обрабатывающий центр обслуживается парой особых магазинов для конвейерных поддонов, которые загружаются с помощью одной-единственпой транспортной тележки, управляемой по высокочастотному кабелю (он проложен под полом). С помощью гележки осуществляется также сообщение с пунктом загрузки-выгрузки.
Компания "Эндерсон Стоэфклайд" будет использовать эту систему для изготовления коробок скоростей и других узлов выпускаемых ею разнообразных угольных комбайнов. Будет изготовляться одновременно четырнадцать различных деталей. Система должна полностью включиться в работу к концу 1984 года.
Возможность увидеть завод-робот в натуре за работой предоставили корреспонденту "Известий" К. Рашидову руководители японской компании "Фудзицу, Фанак", пригласив посетить ее завод "Хино". Вот что он пишет:
"Роботы производят компьютеры и массу самых различных деталей машин, из которых собирают затем себе подобных роботов. Правда, еще не без помощи людей. Но уже через два-три года, по словам директора завода, рабочие уйдут и из сборочного цеха. А пока их здесь шестьдесят человек. Они монтируют роботов. И все же вернее будет сказать - помогают делать это сложнейшему электронному комплексу, состоящему из обладающих уникальной памятью и другими редкими способностями компьютеров и расторопных роботов, захватывающие устройства которых удивительно напоминает человеческие руки.
Механическая рука предельно точна - расхождение равняется здесь плюс-минус 0,05 миллиметра. Но и эгу символическую ошибку робот исправляет в момент захвата деталей. Поражают также плавность и особая мягкость в движениях, которые, казалось бы, дол/кны быть чужды "железной лапе". Может быть, поэтому каждый из металлических гигантов, кроме общего официального названия "Фанак", носит и ласкательное собственное имя. В одном из цехов завода "Хино", выпускающего специальные моторы - механические "сердца" роботов, - мы увидели "хризантему", "лилию", "азалию" и других роботов, выстроившихся в два ряда вдоль обслуживаемых ими станков.
Рядом аккуратными столбиками разложены детали.
По одну сторону - заготовки, по другую - готовая продукция. Подхожу к роботу, на "груди" которого иероглифами и латинскими буквами выведено "Сумирэ", что в переводе означает "фиалка".
Безусловно, и прямоугольное вращающееся "туловище", установленное на вертикальной винтообразной "ноге", и выступающая из него механическая "рука" ничем не напоминают известный цветок. Разве только своей бордово-желто-белой окраской. Но, понаблюдав за роботом даже несколько минут, невольно проникаешься симпатией к этому неутомимому труженику. И собственное имя этой "фиалки Фудзицу" уже не кажется столь неуместным, как прежде. А работает "фиалка" действительно виртуозно, чрезвычайно ловко выполняя не только обязанности фрезеровщика, но и любые трудоемкие функции человека на данном участке.
И все же робот лишь копирует движения рабочего и не в состоянии что-либо "добавить" в процесс от себя.
Некоторое исключение составляет, пожалуй, лишь способность при любом варианте программы моментально выключить станок и свой "мозг" - компьютер - при аварийных ситуациях.
"В основном на это и делается расчет, когда ночью роботы остаются полными хозяевами в цехах", - подчеркнул X. Ситида.
Известный у себя в стране и за рубежом специалист по роботизации производства, он скорее буднично, чем увлеченно, рассказывает о том, что из всех ста работающих здесь человек только один несет ночное дежурство на пульте управления. Остальные трудятся в одну смену с коротким перерывом на обед.
- А вдруг, - спрашиваем, - ночью произойдет какое-нибудь ЧП? Есть ли на такой случай дублер у дежурного, чтобы срочно приехать на завод?
Ответ однозначен: такого человека нет. Потому что в этом нет необходимости. Всем, что нужно для работы, роботы снабжаются с вечера, а в случае какой-либо неисправности компьютер сразу же принимает нужные меры по отключению и изоляции поврежденного участка. За все время работы завода, добавляет наш собеседник, то есть ровно за год, лишь однажды был зафиксирован ночной "прогул" одного из роботов, остановившегося из-за нарушения режима работы.
- А если сильное землетрясение в ночное время?
И, как обычно, сопровождаемое отключением электроэнергии?
По словам X. Ситиды, против стихийных бедствий ничего специального здесь не придумано. Но если исчезнет на какое-то время ток, это не нарушит запрограммированного цикла работ. Компьютеры снабжены специальной "памятью", которая фиксирует заданную программу на прерванном месте, а затем продолжают работать над ней без всякого вмешательства извне.
Кроме ста роботов, установлено семьдесят пять сложнейших компьютеров и столько же различных металлорежущих станков. Вся эта электронная техника и позволяет каждому работающему здесь специалисту, если говорить условно, выполнять норму пятнадцати рабочих.
Иными словами, на обычном предприятии, выпускающем такое же количество продукции аналогичного ассортимента, но без роботов, понадобилось бы не сто, как здесь, а тысяча пятьсот человек.
...Паренек лет девятнадцати, держа в руке небольшой прибор, напоминающий настольную счетно-вычислительную машинку, обходит ряд роботов. Останавливается он у каждого из них буквально на несколько секунд, нажимая при этом на нужные клавиши. Когда он поравнялся с нами, заглядываю ему через плечо: на зеленом электронном табло - очередная программа для "фиалки", набор цифр. Робот послушно переходит на новый режим работы. На весь цех я насчитал трех программистов-наблюдателей. После дневной смены все трое, как нам объяснили, уходят, заранее запрограммировав роботов и обеспечив их деталями до утра.
- Сколько времени требуется на обучение программистов?- На этот раз "интервью на ходу" дает нам С. Като, один из директоров компании "Фудзицу Фанак". Он подробно рассказывает о существующей здесь системе подготовки кадров, которая в основном замыкается на специализированных курсах, как краткосрочных - до месяца, готовящих программистов, так и технических, где обучение идет по более расширенной программе.
Компания "Фудзицу Фанак" - одна из крупнейших в мире среди занимающихся выпуском роботов и управляющих ими компьютеров. Предприятие этой компании, "Хино" например, обладает проектной мощностью в три тысячи такого вида компьютеров в месяц, что составляет более половины их мирового производства. Другая продукция завода - уникальные моторы, механические "сердца" роботов. Они выпускаются трех типов и тридцати пяти разновидностей. Месячная производительная мощность - до десяти тысяч штук.
Каков процент брака на заводах? В ответ на этот вопрос здесь называют цифру - 0,03 процента.
Г-н С. Като подчеркивает также, что главный девиз компании максимальная производительность труда при минимальном использовании рабочей силы. Сейчас на обоих предприятиях корпорации трудятся девятьсот пятьдесят человек, из них более двухсот занимаются дальнейшей научно-технической разработкой производства. Двести человек, выезжая на место, осуществляют техническое обслуживание проданных роботов, компьютеров и моторов. Только в Японии компания имеет двести шесть пунктов обслуживания, не считая тех, что открыты в США, ФРГ, Франции, Англии и других странах.
В связи с этим уместно привести еще один факт, свидетельствующий о непрерывном научно-техническом поиске. В ближайшем будущем, вполне зримом, как нас заверили, необходимость в выездных бригадах технической помощи отпадет совсем. Такая помощь будет оказываться роботам прямо с завода, по телефону.
Днем цехи заводов выглядят отнюдь не безлюдными. И хотя человек нигде не стоит непосредственно за станком или даже на одном месте, роль его, несомненно, принизить нельзя даже на таком в общем-то уникальном производстве. Одетые в фирменные куртки или комбинезоны желтого цвета, люди на первый взгляд неприметно делают здесь главное. Если сказать образно, они, словно врачи, постоянно вдыхают жизнь в послушные только их воле и приказу автоматы, программируют их деятельность, регулярно контролируют их "пульс", оказывая "скорую помощь" во всех случаях "недомогания". Словом, люди держат весь этот электронный организм под своим неусыпным надзором".
Профессор Токийского политехнического института Я. Умэтани, конструктор роботов, считает: "Промышленный робот, я бы сказал, уже достиг своей технологической зрелости, чтобы хорошо служить человеку. Это обеспечено умелым и эффективным сочетанием механических и электронных факторов, которые несет он в себе. В таких роботах нуждается промышленность. Они нужны людям, чтобы освободиться им от вредной для здоровья, а также трудной физической работы. Моя мечта создать такой робот, движения которого были бы такими же гибкими, эластичными, мягкими, как у живых существ, например, как у змей, с той лишь разницей, что "мозг" у него будет электронным..."
До этого, судя по всему, еще весьма и весьма далеко. Тем не менее роботы уже вошли в цехи японских предприятий и уходить оттуда не собираются. Совсем наоборот: круг отраслей, в которых эти электронные "умельцы" нашли себе место, из года в год расширяется, а с ними растет и конкурентоспособность изделий с маркой "Сделано в Японии" на мировых рынках. Сегодня уже невозможно представить себе без роботов, например, ни одного автомобилестроительного предприятия Японии. И именно их появлению на рабочих местах автосборочных цехов "Ниссана" и "Тоеты" обязаны японские монополии своими победами в битвах за рынки сбыта в США и Западной Европе. Их "усилиям" во многом приписывают зарубежные конкуренты Японии свои поражения.
Разумеется, все плоды роботизации производства присваивают хозяева компаний - как те, которые выпускают роботов, так и применяющие их. Именно поэтому широкое внедрение роботов в производство приносит монополиям все новые и новые барыши одновременно неся с собой нарастание в стране социальных конфликтов. И конфликтов, следует заметить, серьезнейших. Но это - особая тема, заслуживающая самостоятельного изучения. А пока, как свидетельствует газета "Иомиури", "по данным Международной организации труда, сейчас в Японии действует сорок шесть тысяч промышленных роботов".
2001.
ПЕРСПЕКТИВЫ
РОБОТЫ БУДУЩЕГО
"Решающее значение приобретает ныне единая научно-техническая политика, - говорил товарищ Ю. В. Андропов на июньском (1983 г.) Пленуме ЦК КПСС, нас ждет огромная работа по созданию машин, механизмов и технологий как сегодняшнего, так и завтрашнего дня".
Будущее робототехники и ее перспективы зиждутся прежде всего на перспективах развития основных составляющих роботов: его эффекторов, рецепторов и интеллектуального "мозга". Однако мы намеренно обеднили бы наш разговор, если бы ограничились лишь таким чисто формальным приемом прогнозирования. Кроме перспектив развития составляющих роботов, следует коснуться перспектив расширения их "жизненных интересов" - проникновения роботов в нашу жизнь.
На протяжении всей книги мы намеренно ограничивали себя, ведя изложение лишь о достижениях сегодняшнего дня, касаясь внедренных и внедряемых разработок, описывая уже функционирующие экспериментальные или опытные образцы. Нигде мы не переходили грань, отделяющую действительность от фантазии. Только в этой главе мы позволим себе немного помечтать.
Начнем с "мозга" роботов - компьютеров. Специалисты утверждают, что к 2001 году мы сможем втиснуть в один кубический сантиметр миллион миллиардов молекулярных электронных контуров, это, вероятно, больше, чем общее число всех транзисторов, изготовленных до сих пор.
Terra computera - "компьютеризованная земля" - вероятно, так не без оснований будут называть нашу планету далекие потомки. Привычный нам счетный прибор - компьютер, - несомненно, станут именовать подругому, ибо его "счетная" способность (от латинского слова compute - считать, вычислять) сменится способностью думать, рассуждать, мыслить. Возможно, его будут величать "когитер" - мыслитель (от латинского coguto - мыслю, думаю, рассуждаю). Эти прогнозы и фантазии отнюдь не обгоняют сегодняшние факты.
Конструкторы приступили к разработке компьютера пятого поколения, который предполагается создать уже в 1990 году. Он должен обладать способностью собирать, обобщать, анализировать и классифицировать информацию, "слушать" и "понимать" человека, "говорить" с ним на его языке.
Этот проект ставит своей целью не столько достижение новых рекордов быстродействия, хотя уже запланирован один миллиард операций в секунду, сколько повышение уровня подлинной интеллектуальности компьютера. Он характеризуется как "революционный", призванный "изменить всю сферу применения ЭВМ в обществе". Не будем пытаться предсказывать последствия этой революции, на то они и революционны, подождем несколько лет - увидим.
Возможно, что к тому времени, как компьютер действительно принесет в нашу обыденность революционные изменения, сам он претерпит еще большие изменения. По крайней мере сейчас элементная база современной электроники меняется столь быстро, что уже не кажется удивительной возможность создания схем на основе... органических молекул, которые являлись бы своеобразными реле и диодами. В создание новых поколений компьютеров включаются, казалось бы, такие далекие от электроники науки, как биохимия и генная инженерия.
Представьте себе компьютер, выращенный в пробирке, синтезированный с помощью особых бактерий! В настоящее время уже ведутся эксперименты с молекулами белка, которые могут выполнять функции двоичных запоминающих ячеек - основных строительных "кирпичиков" любого компьютера. Если эксперименты увенчаются созданием подходящей для этой цели белковой структуры, то массовое производство основных счетных элементов начнется с помощью генетически сконструированных бактерий-производителей.
Целью проведения таких, кажущихся порой утопическими, работ является создание еще более миниатюрных и быстродействующих счетных машин. Ведь добиться этого с использованием обычных материалов и технических способов уже не представляется возможным.
Правда, созданные на кремниевой основе электронные схемы становились в последнее время все меньше и меньше и микрокомпьютеры достигли размеров одного микрона (миллионной доли метра). На сегодняшний день это верхний предел, технически достижимая граница. Однако в таком же объеме пространства могли бы поместиться сотни сложных белковых молекул, и каждая из них могла бы взять на себя выполнение функций подобной микро-ЭВМ.
Одним из "кирпичиков" биологического компьютера стала бы молекула-гигант с "памятью", химическая структура которой умела бы находиться в двух состояниях и работать в двоичной системе. Один из таких "кирпичиков" уже создан: специалисты синтезировали молекулу, в которой два протона и два электрона могут перемещаться от одного конца к другому. Конечно, для создания биокомпьютера только наличия такой молекулы еще недостаточно. Необходимы химические структуры, которые работали бы как диоды, то есть пропускали бы электрический ток лишь в одном направлении.
Имеются уже довольно четкие представления о том, как должны выглядеть такие структуры: биомолекула - диод должна иметь на одном конце биоанод, а на другом - биокатод, которые будут соединены непроводящей средой.
Р. Метцгер и его коллеги из университета штата Миссисипи работают сейчас над созданием такого молекулярного диода. Проблема состоит в том, что необходимо успеть создать непроводящий "мост" до того, как химически прореагируют друг с другом части синтезированной молекулы, отдающие и принимающие электроны.
Если удастся получить хорошо действующую структуру такого рода, то на повестку дня встанет вопрос о о их массовом производстве.
Здесь традиционные химические способы были бы, вероятно, слишком дорогостоящими и сложными. Поэтому все чаще специалисты начинают задумываться над использованием нового чуда науки - генной инженерии.
В бактериях-производителях могут быть произведены такие специальные генетические изменения, что они смогут синтезировать нужную белковую конструкцию.
Однако только наличие большого числа необходимых элементов биопроцессора и биопамяти еще не создает ЭВМ. Каждый элемент необходимо разместить на своем особом месте и специальным образом соединить с другими. Ученые рассчитывают сделать это с помощью "химических проводов" биосоединений с цепочной структурой, которые могут проводить электрический ток.
Введение в компьютер необходимых данных и получение информации будут осуществляться с помощью точно сфокусированных световых лучей. Специалистам уже удался первый шаг в нужном направлении: они изгото вили "полубиологический" полупроводник, обрабатывая слой белка толщиной в одну молекулу парами атомов серебра.
Не менее фантастичны и перспективы развития эффекторов робота - его исполнительных органов.
В будущем, возможно, это будут управляемые электромагнитные поля, ловко и точно "перебрасывающие" тяжелые детали.
Исходя из уже достигнутого уровня современной промышленной технологии, нетрудно себе представить робота с исполнительным органом в виде силовой лазерной установки, и это не фантастика, ведь такой "плазменный нож" уже работает. Он создан сотрудниками Ленинградского политехнического института. Раскаленная струя ионизированного газа размягчает любой, даже сверхтвердый сплав, а следующий за ней резец легко снимает его верхний слой. Такие плазмотроны могут устанавливаться на металлорежущих станках всех типов.
За последнее десятилетие производительность лазерного промышленного оборудования возросла более чем в тридцать раз.
Лазерный луч по своим свойствам - уникальный тепловой источник. Он способен нагреть облучаемый участок детали до очень высоких температур за столь малое время, в течение которого тепло практически не успеет растечься. Нагреваемый участок при этом может быть размягчен, рекристаллизован, расплавлен, его можно вообще испарить. Дозируя тепловые нагрузки путем регулирования мощности и продолжительности, можно обеспечить любой вид термообработки: лазерный луч используется для поверхностной закалки, легирования (внесения примесей), для плавления при сварке, для испарения с выбросом паров при резке и сверлении.
Лазерный луч не загрязняет обрабатываемую поверхность. Он дает возможность сверхточной прецизионной резки и сверления материалов, вообще не поддающихся механической обработке, таких, как композиты и сверхтвердые сплавы, керамика, изделия порошковой металлургии. В отличие от интенсивного электронного пучка он не требует вакуума и биологической защиты. Конечно, он не лишен и недостатков, особенно в начале своей карьеры: это еще сравнительно низкий КПД, высокая стоимость и пока еще недостаточная мощность лазеров, указывает один из создателей лазера, академик Н. Басов, лауреат Государственной и Нобелевской премий.
Советские физики и инженеры разработали много экспериментальных и опытных образцов технологических лазеров. Они действуют на опытных участках и в базовых лабораториях промышленных предприятий и отраслевых институтов. Такие участки появились на московских заводах имени Лихачева и имени Ленинского комсомола, ВАЗе, Череповецком металлургическом и Балтийском судостроительном имени Орджоникидзе заводах; в объединении Тулачермет, на других предприятиях, ускоряется подготовка к внедрению новой технологии, отрабатывается техника, обучаются кадры.
Однако широкое внедрение перспективной лазерной технологии не сводится только к созданию "хороших" квантовых генераторов для конкретных производственных целей - это, как говорится, полдела. Опыт показывает, что для успеха всего дела надо интенсивно разрабатывать специализированное технологическое оборудование, включающее лазеры, станки и роботы, необходимо выпускать полностью автоматизированные, оснащенные роботами лазерные технологические комплексы, создавать гибко перестраиваемые автоматизированные производственные системы на основе лазерной и вычислительной техники. "Облик лазерной промышленности будущего должен вырисовываться уже сегодня", - говорит Г. А. Абильсиитов, директор Научно-исследовательского центра по технологическим лазерам АН СССР, член координационного Совета по программе "Создание и производство лазерной техники для народного хозяйства".
Ведутся разработки лазерной технологии и за рубежом. В нынешнем году одна из японских исследовательских лабораторий в области машиностроения, субсидируемая правительством, планирует продемонстрировать небольшой "завод будущего", где станки, оснащенные лазерами, поднимут автоматизацию производства на новую, более высокую ступень. Эти станки будут осуществлять процессы обработки металлов, такие, как токарная обработка, сверление, фрезерование, выполняемые сейчас по отдельности, одновременно. Это сократит в два раза время, требуемое на механическую обработку деталей партиями, и на 60 процентов уменьшит число производственных процессов. Директор лаборатории М. Канаи говорит, что упомянутые новейшие станки появятся в промышленности не раньше, чем через трипять лет.
Разнообразные рецепторы роботов во много раз превзойдут "числом и умением" наши человеческие чувства.
Взаимодействие человека и робота поднимется на новую ступень.
Пишущие машинки без клавиатуры, печатающие "с голоса", системы регулирования движения, которые будут помогать водителю в выборе маршрута движения и сообщать ему о неожиданно возникающих на автострадах заторах, вот некоторые из технических идей, реализация которых, вероятно, будет осуществлена к концу столетия.
"Общаться" с компьютерами, дисплеями, справочными бюро на базе ЭВМ и "банков памяти" станет предельно легко. Даже тот, кто не владеет специальными знаниями в области программирования и ЭВМ, просто скажет машине, чего он хочет, и получит ответ устно, а если пожелает, и письменно.
Вот самый фантастический пример "взаимопонимания" человека и машины.
Этот необычный эксперимент, который проводится в одной из лабораторий Станфордского исследовательского института в США, напоминает сцену из фантастического фильма. В небольшой изолированной кабине перед телевизионным экраном сидит человек в опутанном проводами шлеме и напряженно всматривается в белую точку в центре экрана дисплея. Неожиданно эта точка оживает и начинает быстро ползти вверх, затем, остановившись на мгновение, снова опускается вниз.
Движения маленькой точки означают одно из самых поразительных достижений в кибернетике - создание компьютера, читающего человеческие мысли. Сконструированный по проекту нейрофизиолога и инженера-электроника Л. Пиннео, этот прибор сможет, по мнению автора, решить сложную проблему быстрой передачи информации компьютеру.
Сначала Л. Пиннео, как и многие исследователи, пытался научить компьютер различать человеческую речь. Но потом ему пришла в голову фантастичная мысль попробовать более прямой метод. За основу был взят электроэнцефалограф, применяемый в медицине для снятия биотоков с различных участков мозга. Если человек может различать характер биотоков, порождаемых различными мыслями или словесными приказами, то почему нельзя научить это делать компьютер?
Определить, каким командам соответствуют определенные биотоки, было довольно просто. Но оказалось, что одна и та же команда у разных людей выглядит на энцефалограмме по-разному. Чтобы решить эту проблему, Л. Пиннео вложил в память ЭВМ большое количество образцов одной и той же команды. Если компьютер сталкивался с новым человеком, он отыскивал в своей памяти образец наиболее похожих биотоков.
Л. Пиннео обучил свой компьютер различать семь команд: "вверх", "вниз", "влево", "вправо", "медленно", "быстро" и "стоп". В опытах, где участвовали двадцать пять человек, компьютер угадал правильно 60 процентов команд. Возможно к 2001 году следует ожидать появления своеобразных "роботов-телепатов".
На высшую ступеньку поднимется и комплексная автоматизация производства. Безлюдные заводы, выполненные на основе роботов-манипуляторов или на базе других принципов, станут так же распространены и привычны, как сейчас промышленные манипуляторы.
Однако они будут кардинально отличаться от них степенью интеллектуальности. Созданные из типовых элементов, гибких производственных модулей и унифицированных блоков программного обеспечения, они будут объединены каналами связи в комплексные сети, подобные существующим уже сейчас сетям ЭВМ. Это позволит решать задачи глобального планирования и кооперированных поставок на уровне не только недостижимом, но и немыслимом на сегодняшний день.
ПРЕОБРАЖЕННЫЙ ТРУД
Роботизация будущего настолько преобразит лицо древних профессий, что мы будем воспринимать их сегодняшнее состояние как невообразимую архаику. Кто может представить себе в деталях нелегкий труд ломового извозчика? Зато работу его потомка-шофера ценит и уважает каждый. Мог ли вообразить педантичный бухгалтер, как изменят его труд непогрешимые компьютеры. Сможет ли предположить сегодня земледелец, тракторист и комбайнер, как коллега-робот ненавязчиво "оттеснит" его сначала в уютную кабину диспетчера, следящего за бегающими по дисплею текстами, а затем и вовсе за пределы обрабатываемых территорий, в кабинет агронома, селекционера, генетика.
Рассмотрим перемены, которые ждут нас на колхозных полях XXI века.
Вместо привычного разнообразия сегодняшних сельскохозяйственных машин на поля выйдут роботы-универсалы. Это будут автоматические портальные механизмы, простирающиеся над равномерно поделенными участками почвы шириной по пятнадцать-двадцать метров. Их колеса будут двигаться не по вязкой жиже взбухшего чернозема, а по гладкой поверхности "дренажных рельсов". Эти рельсы-каналы, представляющие собой составную часть общей дренажной системы, будут сооружаться из пористых каменных или синтетических материалов.
Роботы-порталы, чтобы выйти на следующую позицию для обработки, смогут перемещаться боком по меже без разворота. Небольшими земельными площадями, возможно, придется пожертвовать, но только на участках неудобной формы. Сейчас уже проектируются порталы, предназначенные, однако, для ограниченных целей - химической обработки и внесения удобрений.
Однако с помощью таких роботов будут возможны культивация и даже уборка урожая. Сейчас значительная доля культивационных работ выполняется на глубину до двадцати сантиметров. Устранив движение колес по полю, можно будет сделать его поверхность такой ровной, что станет вполне реальной и совершенно достаточной обработка на глубину всего пять сантиметров.
Механическое сопротивление почвы, а следовательно, и затрата энергии на ее обработку уменьшаются зачастую вдвое, когда полностью будут устранены "колесные эффекты".
Таким образом, энергозатраты на культивацию с помощью портала могут составить всего лишь около двенадцати процентов нынешних энергозатрат. А вследствие хорошего сцепления колес с дренажным рельсом имеется возможность сделать КПД машины гораздо выше, чем у современных тракторов, ведь до 40-50 процентов мощности последних "съедается" на преодоление сил сопротивления движению колес. В будущем процесс культивации может потребовать лишь от пяти до десяти процентов нынешних энергозатрат. Да и вообще культивация станет использоваться в будущем лишь при выращивании специфических культур. Роботология дает возможность достигнуть такого состояния земледелия, когда при возделывании злаков в культивации вообще не будет нужды. Перспективы создания роботехнической "крестьянки", которая могла бы вносить семена злаков в отдельные лунки быстро и точно, например, по специальному шаблону, - эти перспективы вот уже несколько лет вызывают блеск в глазах исследователей.
Уже сейчас возможно выведение гибридных злаков, при севе которых достаточно будет одного зерна на квадрат со стороной, скажем, от десяти до двадцати сантиметров. От зерна отойдет множество побегов, и растение будет выглядеть наподобие куста. В альтернативном варианте растения останутся похожими на сегодняшние пшеницу и ячмень, но мы будем способны рассаживать отдельные зернышки в специальные лунки по квадратикам со сторонами от четырех до пяти сантиметров на строго заданную глубину.
Удивительные возможности открывают эти роботы для сбора урожая. Из-за того, что, с одной стороны, самая благоприятная структура почвы для посева злаков оказывается как раз накануне жатвы предыдущего урожая и, с другой стороны, не будет колес, повреждающих посевы, станет возможным высевать и проращивать зерна нового урожая еще до того, как будет снят старый.
Портальный робот будет получать информацию от центрального компьютера, отображающего количество высеваемого зерна, глубину посева и состояние почвы.
Сведения обо всем, что распределяется по обрабатываемым площадям, будут отображаться на индикаторах и фиксироваться на магнитной ленте. Во время вегетационного периода могли бы оказаться полезными более простые портальные механизмы, также управляемые автоматически.
Можно предположить также, что в следующем веке уборка урожая не будет связана с громоздкими уборочными комбайнами, оснащенными целым "флотом" грузовиков и тракторных тележек для перевозки зерна и вывоза с поля брикетов соломы. Решение вопроса, заключается в "уборке цельного урожая", которая применяется до сих пор в экспериментальном порядке и обладает неотъемлемыми преимуществами. На портал можно навесить платформенную жатку, которая могла бы всего за один проход портала взад и вперед по обрабатываемой полосе снять весь урожай со всей ее ширины. Сжатые злаки будут загружаться в контейнеры модульного типа, навешенные на портале, и уже в них подаваться на специальные транспортные машины.
Обмолот и сушка зерна производятся в своеобразном цехе. Процесс молотьбы будет осуществляться с помощью ультразвука, а не на нынешних механических молотилках. В последующем процессе сушки зерна некоторая доля соломы и мякины может быть использована в качестве топлива для подогрева воздуха.
Зерно могло бы также сушиться с помощью микроволн. Преимущество этого способа заключается в том, что влага испаряется настолько быстро, что зерна трескаются: тем самым уже осуществляется первая стадия подготовки зерна к помолу.
Операции по сортировке овощей и фруктов уже сейчас имеют все большую тенденцию концентрироваться на крупных сортировочно-упаковочных пунктах. Их преимущество состоит в применении сложной, но зато быстро действующей техники. Помятость и побитость плодов можно определять с помощью термографии. Проведенные работы внушают надежду, что с помощью термографического метода побитые места на яблоках возможно отличить от здоровых, если плоды сначала охладить, а затем нагреть на несколько градусов.
В XXI веке техника распознавания образов с использованием микропроцессоров, по-видимому, будет способна выявлять такие ничтожные различия в форме и размерах плодов, что ручной труд в этой области совершенно исчезнет.
Уже сейчас созданы роботы, присматривающие за животными, ведь темп прогресса роботизации за последнее время был самым высоким на животноводческих фермах. В будущем вся статистика молочного поголовья будет вестись по данным портативных электронных устройств с вживленными датчиками, которые будут укреплены на животных. Каждой корове будет присвоено свое электронное имя. Информация будет использоваться как для внутриферменных целей, так и для общенациональных задач улучшения поголовья при осуществлении крупных научно-исследовательских проектов.
Процесс доения будет начинаться с того, что корова с помощью автоматов приводится в доильную установку конвейерного типа, где опознается и изучается с помощью вживленных датчиков.
Для подсоединения доильного агрегата к коровьему вымени будет применяться техника распознавания образа путем использования информации, хранящейся в памяти компьютера, в сочетании с оптическими и микроволновыми датчиками для определения положения сосков. В ходе доения качество молока может контролироваться для выявления у коров мастита.
Удои молока будут регистрироваться компьютером, собирающим также сведения о результатах деятельности фермы. Они будут передаваться в национальные или районные статистические управления. Поставки на рынок откормленного скота будут планироваться гораздо точнее, так как с помощью компьютера станет возможно доводить животных до нужной упитанности строго к назначенному времени.
На свинофермах роботы будут осуществлять поиск заранее помеченных животных, для выбора их из стада, а также развозить и вытряхивать солому из брикетов. Они будут присматривать за животными и посылать свои сообщения центральному управляющему компьютеру, имея для этого телекамеры и системы дистанционного контроля.
Робот сможет объявлять тревогу и даже сам принимать решения, например, в ответ на изменения в состоянии окружающей обстановки. Сельскохозяйственное производство превратится в индустриальный конгломерат биологии, электроники и кибернетики. Лицо профессии колхозника преобразится настолько же, насколько сейчас неузнаваемо изменился труд, скажем, писаря, бухгалтера, извозчика, кочегара, мельника и эскулапа.
РОБОТЫ В БЫТУ
В XXI веке роботы будут выполнять не только большинство производственных обязанностей человека, но и получат широкое распространение в быту. Дом превратится в единый роботизированный комплекс, управляемый центральным компьютерным мозгом. К тому времени, несомненно, сильно возрастет роль жилища, так как многие специалисты смогут проводить дома большую часть своего рабочего времени. В домашней обстановке можно будет получать доступ к любым архивам, сотням библиотек, к крупным компьютерным сетям. Зачем терять время на поездку для деловых переговоров, занимающих иногда всего десяток минут, если станут возможны телеконференции, принимать участие в которых можно будет, не выходя из дома.
Причем, участниками таких конференций могут быть представители любой точки земного шара, а синхронный перевод в случае необходимости обеспечит специальная ЭВМ. Телекопировальные устройства позволят обмениваться чертежами, планами, фотографиями и корреспонденцией, причем их факсимильные изображения будут доставляться адресату всего за несколько секунд.
Существенные изменения произойдут также в жизни работающих женщин. Разрешится наконец противоречие между необходимостью ходить на службу и следить за домашним очагом; мать семейства сможет выполнять свои профессиональные обязанности, не упуская из виду своих детей, которых она в случае необходимости оставит под присмотром телеглаза и роботаняньки в тот день, когда ей необходимо будет отправиться на работу.
Кухня будущего представит собой настоящую бригаду автоматов. Уже сейчас в продаже есть стиральные машины и комбайны с программным управлением, а скоро все аппараты и устройства для стирки, обработки продуктов, стряпни будут управляться микрокомпьютерами. Для пуска достаточно будет набрать нужный код на клавиатуре, аналогичной клавиатуре пишущей машинки, при этом не потребуется никаких специальных познаний. Компьютер сам задаст наводящие вопросы и возьмет у вас дружелюбное интервью по поводу ваших гастрономических вкусов. Кофемолки, мясорубки, соковыжималки и другие приспособления, которые наряду с пластмассой получили широкое распространение в 70-х годах, постепенно будут вытеснены одним или двумя приспособлениями, способными выполнять по нескольку разнообразных операций. Приготовление домашних блюд из быстрозамороженных, обработанных в вакуумной сушке или более классических консервированных продуктов будет сиюминутным.
Упаковка, преимущественно пластик или фольга, будет служить как посудой для приготовления в микроволновой печи, так и посудой, на которой готовая еда будет подаваться на стол. На упаковках будет в обязательном порядке приводиться состав продуктов, домашний компьютер будет автоматически считывать надпись и выбирать продукты в соответствии с принятой дома диетой. Решение машины будет индивидуальным в зависимости от склонностей и медицинских сведений о каждом члене семьи.
Кто же будет следить за исправной работой всех этих устройств? Телефон! Эти устройства будут "телеремонтируемыми" из общего городского компьютерного центра, как и многие современные вычислительные машины. В случае отказа устройства не будет необходимости доставлять его в ремонтные мастерские, характер неисправности и устранение ее в большинстве случаев будут устанавливаться и выполняться также по телефону.
Одним из наиболее расторопных "слуг" 2001 года станет робот-пылесос, который будет перемещаться с помощью мотора с дистанционным управлением. Он окажется способным действовать без вмешательства человека: будет переходить из комнаты в комнату, обнаруживать препятствия, распознавать их форму и обходить их. Естественно, робот самостоятельно будет опустошать пылесборник всякий раз, как только в этом возникнет необходимость.
Утопия ли это? Нет, реалистический прогноз. В области связи и информации достижения удваиваются за каждые несколько лет, причем стоимость аппаратов останется прежней. Через десять лет устройства будут в тысячу раз более совершенными. Через двадцать - в миллион раз. И то, что является уникальным сегодня, завтра будет доступно любой семье.
Суперпылесосы, как и другие домашние приборы, можно будет приводить в действие по телефону. Будет разработан удобный и экономичный метод, по которому работа кухни, ванны и других "слуг" будет управляться по телефону и начинаться за несколько часов до прибытия хозяев. По мере распространения способа обогрева жилищ постоянно очищаемым горячим воздухом меньше будет садиться пыли и, значит, меньше придется работать пылесосом.
Зайдем на минутку в завтрашнюю ванную комнату.
Где привычный блеск труб? Краны выполнены из пластика, водопроводные трубы также, что внедряется уже сегодня. В ванных комнатах комфорт сочетается с безопасностью: нет больше риска поражения электричеким током.
Так же, как и в современных гидротерапевтических аппаратах, температура воды, напор и ритм пульсации регулируются микропроцессором, позволяя людям с сердечной недостаточностью пользоваться ванной без всякой опасности для здоровья. Специальный браслет, надеваемый на запястье, обнаружит тут же любое отклонение от нормы в состоянии купающегося. Это будет одно из проспособлений, которые помогут больным или пожилым людям обрести свободу действий. Рядом с мягкой, а не эмалированной ванной стоит наготове целый арсенал роботов. Они всегда готовы массировать вам лицо и тело, осуществлять велотренировки под биологическим контролем, они взвесят вас и занесут ваш вес в домашнюю медицинскую карточку, измерят давление крови, температуру тела, а также безболезненно возьмут кровь на анализ. Каждый квартал вычислительная машина внешней компьютерной медицинской лаборатории будет исследовать эти данные. Таким образом, люди будут каждодневно проходить медицинский контроль с помощью домашней вычислительной машины.
Прогресс коснется также спален. Как и рабочие кабинеты, они будут наиболее звукоизолированными комнатами в доме. Архитекторы и строители наконец обеспечат право людей на тишину. Кровати будут находитьтя под рассеянным светом. Относительно их конструкций существуют две прямо противоположные теории: по одной, матрац должен быть жестким, подобно деревянному ложу; согласно другой он должен быть очень мягким, подобно нынешнему лечебному матрацу, наполненному водой с определенной температурой. Такой матрац будет давать ощущение невесомости. Только вместо воды матрацы будут наполняться густой маслянистой жидкостью: постель будет принимать любые формы тела.
Ученые прогнозируют, что в будущем люди с удовольствием займутся ручным трудом в часы досуга.
Так, например, между двух блюд, легко изготовленных из быстрозамороженных продуктов, будет подаваться вызывающее сенсацию кушанье, изготовленное по рецептам старой национальной кухни. В домах увеличится количество изделий, вытканных или вышитых ручным способом. Но одновременно в распоряжении людей будет электронное устройство, освобождающее or долгой стадии обучения.
Художественное оформление жилищ также претерпит изменения. Все больше и больше появится картин на стенах, искусство будет широко представлено в домах благодаря огромному телевизионному экрану, показывающему коллекции художественных сокровищ со всего света. Вы увидите также объемные картины, выполненные методом голографии. В затемненных уголках будут располагаться удивительные фигуры: вы увидите свою жену или мужа, ваших детей, и все это объемно и во весь рост. Эти иллюзорные статуи явятся результатом голографического воссоздания на основе сотен фотографий, сделанных обычной фотокамерой.
Голография найдет применение и в области техники, например в зеркале, которое позволяет водителю автомобиля, не отрывая глаз от дороги, наблюдать за приборным щитком, видимым благодаря многократному экспонированию на ветровом стекле. Автомобилисты будут также располагать мини-радарами, позволяющими заблаговременно обнаруживать объекты в тумане.
Но самые бурные эмоции вызывают возможности использования электронных установок на автострадах.
Техническая выполняемость магнитного управления автомобилем была продемонстрирована уже четверть века назад. Проблема возникает лишь в связи с довольно высокой стоимостью их установки.
Представим себе лето 2001 года... Автомобиль мчится по шоссе. Бортовой когитер только что сообщил водителю, что на дороге все спокойно, машина идет с запрограммированной скоростью, задержек в пути не предвидится. Но вот в районе No 6 звучит сигнал тревоги: впереди, в нескольких километрах, произошла авария, движение на автостраде блокировано. Светящиеся панели дистанционного управления, приводимые в действие из центральной диспетчерской, сообщают водителям, в каком пункте им следует свернуть. Тех, кто все же попал в пробку, по радио извещают о ходе дорожных работ.
Сцена из научно-фантастического фильма? Нет, реальность. Но только не сегодняшнего дня, а 2001 года.
Речь идет о технических достижениях, которые в ближайшем будущем революционизируют автомобильное движение.
В экспериментальной лаборатории Автодорожного общества в Милане планируется уже в 1985 году все данные об интенсивности движения, состоянии дорог и метеорологических условиях централизовать в восьми компьютерах: в Генуе, Милане, Болонье, Флоренции, Фиано Романо, Кассино, Пескаре и Бари. Укрепленные у каждого дорожного поворота знаки с надписью "осторожно, гололед" заменят видеоэкраны компьютерной связи, где можно узнать самые последние данные о погоде. Панели дистанционного управления снабдят водителя сведениями о состоянии дороги впереди. "Автодорожное радио" будет вещать круглосуточно, сообщая о движении в том или ином пункте, о дорожных условиях, передавая просьбы об оказании помощи.
Количество транспортных средств на каждом участке дороги зафиксируют микроволновые датчики.
Эти небольшие, окрашенные в желтый цвет колонки будут установлены по краям дорожного полотна. Проезжая мимо такого датчика, автомобиль прерывает поток микроволн. Эта информация регистрируется и передается в диспетчерский пункт.
Таким образом, оператор из центральной диспетчерской сможет постоянно иметь перед глазами как бы моментальную фотографию всей автодорожной сети.
Проекты будущих дорог разрабатываются на видеомониторах с запоминающим устройством, снабженных системой боковых экранов, что позволяет воссоздавать целостную картину дорожной сети, постоянно прибавлять к ней новые данные, образовывать "банк данных" со сведениями о мостах, тоннелях, объездных путях.
Подобная система управления "Старт" уже действует на Садовом кольце в Москве.
РОБОТЫ И МЫ
Роботы, которые видят, слышат, говорят и принимают правильные решения, несомненно, изменят взгляд человека на самого себя. Что есть человек? Что в нем особенного? Как отличить его от робота? Кое-какие признаки называют сами роботосоздатели. Роботы, говорят они, никогда не будут обладать нашим физическим проворством, несмотря на их отдельные специфические возможности. Конечно, мы сможем создать робота, который будет прыгать выше человека или дальше метать диск, но сомнительно, чтобы смог появиться механический победитель в десятиборье.
Роботы, разумеется, смогут видеть картины, например, захода солнца, но они не будут при этом испытывать даже подобия чувств, похожих на человеческие.
Есть все же решающая разница между человеком и машиной. Человек как целое - это постоянный исследователь своего внешнего и внутреннего мира. Это индивидуальность, способность к риску, храбрость, вера и многое другое, чего никак нельзя сказать о машинах.
Люди, как правило, к чисто человеческим свойствам относят эмоции, чувства и самосознание. Но самые дерзновенные из ученых все же полагают, что когда-нибудь настанет день, когда и эти неуловимые атрибуты человечности перейдут в "холодное чрево" бесстрастного компьютера. Это, возможно, будет следующий этап эволюции.
В развитии разума роботов специалисты видят лишь одну вполне реальную преграду - юмор, который, по-видимому, никогда не будет доступен машине, но который играет первостепенную роль в мыслительном процессе человека.
На советско-американской конференции по связям с внеземными цивилизациями во вступительном слове академик В. Амбарцумян в качестве возможных носителей внеземных цивилизаций предложил рассматривать абстрактное общество из подобных друг другу членов, способных принимать, накапливать, хранить и выдавать информацию.
Это общество может состоять из биологических организмов, подобных человеческим, из совокупности автономных кибернетических устройств или из единой кибернетической системы, не состоящей из автономных частей. Все участники симпозиума рассматривали искусственный разум как новый космический фактор.
Профессор И. Шкловский даже предложил гипотезу, согласно которой возникновение искусственного разума является высшим этапом развития материи во вселенной. Качественно различные этапы эволюции, по И. Шкловскому, следующие: неживая эволюционирующая материя; живая эволюционирующая материя; естественная разумная жизнь; искусственная разумная жизнь. И. Шкловский полагает, что эра естественных разумных существ является сравнительно коротким этапом развития материи во вселенной. Он пишет: "Появление искусственных разумных существ должно ознаменовать новый, качественно отличный от предыдущих, этап развития материи. Разум как бы отделяется ог своей конкретно-биологической основы и становится чисто функциональным свойством особой, весьма высокоорганизованной материи".
Поскольку робот в принципе может обладать основными "кибернетическими" свойствами биологической системы, мы вправе отнести его к миру "живых существ", разумеется, если понимать этот термин достаточно широко.
Создавая совершенных роботов, человек создает не только новую жизнь, "популяцию роботов", но и новый тип социальных отношений. Трудно даже представить те последствия, к которым приведет совершенствование интеллектуальных киберов. По всей видимости, эти последствия будут не менее существенными, чем последствия овладения ядерной энергией, изобретение ЭВМ, больших интегральных схем или генной инженерии.
Робототехническая революция в недалеком будущем существенно повлияет на многие стороны жизни общества, особенно если учитывать перспективы дальнейшего совершенствования технологии изготовления микроэлектронных узлов. Вместе с тем эта революция в условиях капиталистической системы хозяйствования неизбежно порождает ряд социальных проблем.
Прогресс в электронике позволяет значительно повысить производительность труда в самых различных сферах деятельности человека, но в условиях капиталистического общества это приводит к дальнейшему росту безработицы.
Об отрицательных сторонах компьютерной революции в капиталистическом обществе говорим не только мы, но и здравомыслящие буржуазные ученые, например, профессор права Колумбийского университета Э. Уэстин: "Компьютерные терминалы и процессоры для обработки текстов могут держать нас под надзором. Любой босс теперь сможет знать, сколько знаков в минуту печатает на машинке его секретарша и сколько она их напечатает за час, за рабочий день.
А в тех компаниях, которые проводят политику интенсификации труда, рабочего теперь с помощью новой техники сумеют зажать совершенно".
Добавим: их сокращают тысячами и десятками тысяч. На уволенных, однако, обрушивается трагедия безработицы. "Когда уровень безработицы в Соединенных Штатах повышается на один процент, число самоубийств возрастает на четыре процента, более чем па пять процентов число убийств, на три процента увелиличивается число пациентов в психиатрических лечебницах, на четыре процента - число заключенных в тюрьмах, на два процента - уровень смертности", - мрачно констатирует компания "Эн би-си".
Как ожидается, процесс автоматизации с внедрением автоматических пишущих машинок, электронных средств связи и автоматизированных систем ведения делопроизводства коснется также занятости даже канцелярских работников, число которых за последние десятилетия, несмотря на общий спад, постоянно растет.
Как утверждают специалисты фирмы "Сименс", в ФРГ к 1990 году около 40 процентов канцелярской работы будет выполняться автоматизированными средствами.
Аналогичное исследование во Франции предсказывает сокращение в течение последующих 10 лет уровня занятости в банковском деле и страховании на 30 процентов, а согласно прогнозам фирмы "Компьютер энелист энд программерз", в Англии к 1981 году уровень занятости сократится на один миллион человек в промышленности и на 1,25 миллиона человек в сфере торговли. Кроме того, примерно трем миллионам человек придется полностью или частично менять профессии.
Компьютеры не стойки перед лицом преступных замыслов. В массивы данных, хранящихся в них, можно внести изменения, в их программы можно нелегально добавить новые команды, а старые использовать для совершения злоупотреблений, причем часто все остается незамеченным. Нарушители законов смогут наносить больший и более частый ущерб, так как появление персональных компьютеров умножает число средств для проникновения в компьютерные системы и возрастает число людей, знакомых с ними. Уже известен случай, как двое мальчишек из Калифорнии, пользуясь междугородными телефонными линиями, занимались тем, что портили родословные породистым собакам и скаковым лошадям, сведения о которых хранились в памяти компьютера в штате Кентукки.
Известно, что ограбления в экономически развитых буржуазных странах приобретают все более угрожающие масштабы. Крадется и информация. По оценкам швейцарских экспертов, в 80-е годы ежегодные потери, связанные с кражей информации, неправильным использованием ЭВМ и неполадками в их работе, составят в странах Западной Европы около 30 миллиардов долларов. По их прогнозам, 9,8 процента этого ущерба явится следствием информационного шпионажа.
Недавно один из крупных американских банков уволил своего служащего, выкравшего путем манипулирования с ЭВМ информацию на 20 миллионов долларов.
Однако после того, как конкурирующие банки предложили уволенному солидное денежное вознаграждение в обмен на интересующую их информацию, он был незамедлительно восстановлен на работе. Более того, назначен шефом службы информационной безопасности банка. Это было единственным средством заставить замолчать слишком хорошо осведомленного служащего.
Многочисленные случаи кражи информации вынудили фирмы прибегать к услугам тех, кто производит и устанавливает специальное электронное оборудование, обеспечивающее безопасность хранения и передачи информации.
Наибольшие убытки от утечки информации несут нефтяные монополии. Так, у одной из американских компаний недавно лишь в течение одного месяца сорвались все ее коммерческие сделки. Оказалось, что линии связи, которыми пользовалась фирма, прослушивались. Даже спутники связи не гарантируют полной безопасности передачи информации. За 110 тысяч франков можно приобрести аппаратуру, позволяющую "подключиться" к спутниковым каналам связи.
Со временем человек создает себе среду обитания и условия жизни все более и более искусственные. А чем искусственнее среда, тем сильнее мы зависим от надежности техники и от ее отказов, если они происходят.
С одной стороны, техника укрывает человека, создает ему комфорт, безопасность, но с другой - ставит его в вассальную зависимость от своей безотказной работы.
Существует уже целая фактотека разнообразных ошибок компьютеров. Вот несколько примеров.
Международная геофизическая программа состояла в запуске тридцати двух шаров-зондов, управляемых компьютером. В арсенале исследователей было несколько команд, в том числе и передаваемая по радио команда самоликвидации зонда в случае завершения экспериментов. По роковой ошибке компьютера шестнадцать из тридцати двух шаров были уничтожены в первую секунду эксперимента.
Наверное, самой дорогостоящей была разработка программного обеспечения космической программы "Аполлон". Несмотря на тщательную проверку и дублирование, в программу все-таки вкралась ошибка. В результате во время подлета к Луне лунный модуль стал бешено вращаться в одну сторону. Только находчивость космонавтов, отключивших компьютерное управление, спасла экспедицию от катастрофы.
В США в июле 1962 года из-за пропуска дефиса в программе пришлось подорвать космическую ракету, стартовавшую с мыса Кеннеди к Венере. Ракета стоила восемнадцать с половиной миллионов долларов.
Так обстоит дело в капиталистическом обществе, где главным критерием производственной деятельности является прибыль. Здесь роботы только способствуют росту безработицы, повышению нормы эксплуатации труда, возрастанию конкуренции, разорению мелких фирм, усилению монополизации.
Напротив, в социалистическом обществе, где средства производства принадлежат народу, где производство материальных благ ориентировано на повышение благосостояния и улучшение условий труда, использование техники нацелено на ускорение процесса создания материально-технической базы коммунизма.
Если роботизация на Западе только обостряет острейшие социальные конфликты, то роботизация в нашей стране и других странах социализма, напротив, сглаживает имеющиеся неантагонистические противоречия социалистического общества: противоречие между физическим и умственным трудом, противоречие между городом и деревней.
То, каким образом это происходит, уже подробно обсуждалось на страницах этой книги, и здесь читателю представляется возможность проверить себя и самому ответить на эти вопросы.
Когда материальные блага начнут производиться в изобилии и человек освободится от насущных материальных забот, более полно раскроется его творческий потенциал, он будет славен силой творческого воображения и мощью творческого мышления, всесторонней образованностью и безграничной любознательностью, душевным богатством и духовными интересами, вниманием иг чуткостью к людям, способностью к общению... Да почему бы не физической красотой?
Много ли среди нас потенциальных натурщиков и натурщиц древнегреческих скульпторов? Жизнь стала лучше, скажет читатель, пища богата калориями, да и едим мы больше. Однако количество людей с избыточным весом возросло вовсе не оттого, что люди стали больше потреблять пищи, а оттого, что физическая активность мужчин, а позднее и женщин резко снизилась.
Дело в том что, начиная со времени, когда Г. Форд начал массовое производство автомобилей, и главным образом после второч мировой войны, человечество произвело огромное количество трудосберегающих средств для промышленности и для дома. Результатом постепенного обездвиживания человека стала полнота. Устранение любого, даже незначительного на первый взгляд движения является причиной увеличения веса. Например, если вы всего лишь заменили механическую пишущую машинку электрической, количество энергии, которую вы не расходуете, соответствует 1 -1,5 килограмма жира в год. У большинства людей, борющихся сегодня с полнотой, такой проблемы не существовало триста лет назад, когда никаких роботов не было и в помине, когда люди всюду ходили пешком, кололи дрова, обрабатывали поля и т. д. Полнота сама по себе неприятна, неудобна, неэстетична, но страшнее всего то, что она является почвой для возникновения заболеваний или усугубления уже имеющихся болезней. Достаточно сказать, что такая распространенная причина смертности, как пресловутый инфаркт, еще сто лет назад была медицинским курьезом! Статистика показывает, что подвижные, стройные люди более, жизнеспособны, чем полные.
Уж не подкладывают ли роботы нам свинью гиподинамии - обездвиживания? Так могут рассуждать только те, о ком народная мудрость говорит как о "плохом танцоре", которому будто бы мешают танцевать различные "обогревательные приборы". Подлинная творческая личность способна реализовать те огромные перспективы, которые открывают нам "соединение на деле преимуществ социалистического строя с достижениями научно-технической революции". Перед такой личностью не стоит проблема, что же делать в будущем, когда роботы освободят нас от производственных обязанностей. Некоторые начинают готовить себя к будущему уже сегодня.
В Болгарии, в городе Пловдиве, существует молодежный клуб "Прогностики и фантастики-2001".
Клуб проводит фестивали научной фантастики. Первый был посвящен 110-й годовщине со дня рождения В. И. Ленина, второй - 20-летию полета в космос Ю. Гагарина. Кроме этого, клуб проводит семинары, дискуссии, показ объединенных программ фантастического искусства, конференции, встречи с писателями, вечера юмора и т. п.
Юноши и девушки из клуба "2001" убеждены, что XX столетие останется в памяти человечества как век специализации, ибо в грядущем не будет места так называемым узким специалистам. Сегодня мы еще восхищаемся, скажем, хорошим инженером за его профессиональные качества, часто не задумываясь об остальных плюсах и минусах. Завтра же такое станет немыслимым. Общество все более нуждается в гармоничных личностях, ведь люди создаются обществом, а оно, в свою очередь, создается людьми. Недаром девиз пловдивского клуба гласит: "Гармоничная личность - основа гармоничного общества!"
Клуб вот уже несколько лет ведет "эксперимент2001". Этот экспериментнеобычный турнир: юноши и девушки гоняют на велосипедах, плавают наперегонги, состязаются на легкоатлетических дорожках, увлеченно играют в футбол, баскетбол, теннис, шахматы, собирают разрезанные на мелкие кусочки фотографии, столярничают, оценивают свой глазомер (определяют вес и расстояние на глаз). Наконец, каждый пишет реферат на одну из сорока предложенных тем, взятых из самых различных областей знаний! Такое многоборье, несомненно, весьма удивило бы стороннего наблюдателя, но, как заявляет председатель клуба, здесь таких нет, ибо именно в их отсутствии и заключается суть эксперимента.
Это не показные соревнования перед публикой, а просто конец недели, проведенный "в духе будущего" интенсивно и разнообразно. Два дня, на протяжении которых человек проверяет себя, пробует свои силы в различных областях, открывает для себя радость гармоничного развития личности. Найти путь к воспитанию такой личности - вот в чем идея эксперимента.
ЗАКЛЮЧЕНИЕ
Будущее обещает нам поистине впечатляющие перспективы. Фантастика становится обыденностью на наших глазах, а научные прогнозы обгоняют фантазию.
Еще до конца XX века наши дома и школы, наш досуг и наша работа под влиянием компьютеризованных роботов переживут самые радикальные изменения. Эти перемены обещают быть настолько далеко идущими, что историки будущих веков станут рассматривать нынешнее десятилетие, как поворотный пункт в эволюции всего, общества. Можно уверенно сказать, что именно сегодпл закладывается фундамент нового образа жизни, где умение обращаться с роботами и компьютерами станет таким же условием приобщения к цивилизации, как прежде грамотность.
Знакомство с популяцией роботов, их эволюцией и перспективами развития сейчас столь же необходимо, как знание языка и обычаев страны, где мы собираемся жить.
Еще почетнее "приложить руку" к этой эволюции, вложить свой труд, талант и дерзание в становление нового общества. И хотя закончен наш рассказ об эволюции роботов, но не закончена сама эволюция!
Те, кто сейчас только учится, кто приобщается к миру науки, читая пока лишь научно-популярную литературу, скоро сам станет создавать научные теории. И может быть, именно тебе, юный читатель этой книги, предстоит открыть в эволюции роботов самую захватывающую страницу.
Стр. 1 : Стр. 2 : Стр. 3 : Стр. 4 : Стр. 5 : Стр. 6 : Страница 7 : Стр. 8 : Стр. 9 :
|