25.12.2010, 10:50
Автор: Владимир Николаевич Бусленко
Издатель: Серия "Эврика"
Размер: 400k.
Рассказ: Фантастика
Стр. 1 : Стр. 2 : Стр. 3 : Страница 4 : Стр. 5 : Стр. 6 : Стр. 7 : Стр. 8 : Стр. 9 : их ограничений, его можно сделать чувствительным к инфракрасным и ультрафиолетовым лучам. К электронному глазу можно подключить радар или сонар, он сможет видеть в темноте и при сверхъярком свете в печи телескопически или микроскопически, фиксировать процессы, проистекающие или очень быстро, или чересчур медленно. Тогда станет возможным то, что "и не снилось" зрению человека, например спектрографический анализ вещества объекта путем простого "осматривания".
На очувствленном роботе Токийского университета проводятся эксперименты с движущимися предметами.
Робот оснащен подсистемой "визуального очувствления", или, попросту говоря, зрения на телекамере. Это позволяет ему весьма точно определять координаты предмета. Управляющее устройство -на базе микрокомпьютера осуществляет пересчет из системы координат рабочей зоны в систему координат манипулятора и вырабатывает управляющее воздействие на приводы манипулятора. Управление осуществляется в так называемом реальном времени.
Вот по рабочему полю катится шарик. Робот сможет захватить его и аккуратно опустить в движущийся по транспортеру стаканчик. Для облегчения визуального контроля все предметы, за которыми наблюдает глаз робота: шарик, стаканчик, схват робота, - окрашены контрастной ярко-белой по отношению к серому фону краской. А вот другой эксперимент, в котором робот ловко бросает шары в специальную коробку, расположенную в полутора метрах. Под конец робот выполняет ряд явно рекламных манипуляций: зажигает спичку и даже играет на ксилофоне.
СЕМЬ РАЗ ОТМЕРЬ
Роботы второго поколения, оснащенные мощными "чувствами", открыли совершенно новую область применения роботов - контроль. Робот-контролер с успехом заменяет человека на столь трудоемкой и нудной операции. Появились даже специальные профессионально ориентированные роботы, так называемые измерительные центры. Кисть руки такого робота оснащена системой щупов, тоненьких чувствительных пальчиков, которые, перемещаясь по измеряемой поверхности, могут передавать в мозг робота сверхточную информацию по всем размерам и параметрам ощупываемой кривой. Способ замера без остановки щупа - измерения "в полете" - позволяет быстро и точно контролировать форму и размеры любой замысловатой конфигурации.
Такой робот представляет собой, как правило, массивное основание, исключающее вибрацию и другие помехи, влияющие на точность измерения и величественную портальную конструкцию, обеспечивающую идеальный доступ ко всем точкам детали.
К измерительной головке может подсоединяться до пяти наконечников-щупов, выставленных в разных направлениях.
Результаты измерений вводятся в ЭВМ, обрабатываются и представляются пользователю на экране дисплея. Кроме того, широкая гамма специальных программ позволяет использовать этот робот с большой универсальностью. Здесь и программы специальных геометрических расчетов, программы расчета допусков и припусков, программы автоматического программирования под данную деталь станков с ЧПУ и др.
Главное роботическое свойство этого измерительного центра - это гибкость. Его можно запрограммировать на деталь любой формы и размера, задать требуемую точность и допустимую скорость измерения, научить сообщать о всех отклонениях в измеряемой детали и даже управлять станками с ЧПУ по корректировке положения режущих инструментов. Использование такого робота на выборочном контроле формы автомобильных кузовов позволило сократить эту операцию с нескольких дней до нескольких часов. Однако, естественно, одним ощупыванием дело контроля не исчерпывается. Вот еще два примера.
На одном автозаводе создана система с применением робота, который как бы "вынюхивает" отверстия в кузове нового автомобиля. Рабочие вводят в машину под давлением небольшое количество гелия, а переносимые роботом по определенным траекториям датчики улавливают любую утечку газа, которая может произойти оттого, что плохо сварены швы или неплотно прилегают двери и окна. Это самый совершенный тест, которого можно добиться в условиях современной технологии, да и той, которая появится в ближайшем будущем. Чтобы обеспечить такую четкую работу, раньше конвейер должен был всегда останавливаться перед роботом, а кузов находиться в определенном положении.
На заводе эту проблему решили по-новому, следующим образом: один из старых конвейеров был модернизирован так, что специальные устройства фиксируют автомобили с точностью до 1,5 миллиметра. В результате такого преобразования роботы впервые используются на постоянно двигающемся конвейере, при этом роботов "заставляют" работать с большой точностью.
К профессиям промышленных очувствленных роботов недавно добавилась еще одна - дегустатор питьевой воды. В Берлине сейчас установлены шесть таких роботов, которые через определенные промежутки времени берут из водопроводной сети пробы воды и в считанные секунды проводят ее анализ. Данные анализа тут же сообщаются на центральный диспетчерский пункт водного хозяйства столицы ГДР.
Как мы уже говорили, роботы первого поколения не умеют "брать" заготовки, лежащие в беспорядке, "навалом", специальная же укладка деталей в определенном порядке - операция ручная, она снижает общий уровень производительности труда. Кроме того, в используемой для этого специальной таре с ячейками детали, как правило, должны укладываться в один слой, а это требует увеличения тары и объемов складов.
Вот если бы можно было поставить перед роботом ту же тару, которой пользуются на заводе! Для этого, однако, надо решить довольно сложную задачу распознавания образов - "узнавания" - и последующего ориентирования деталей. Экспериментальные "умные" роботы справляются с этой работой хорошо, однако до "прописки" в цехе им еще далеко. Производственную деталь вообще распознать трудно: она может быть покрыта грязью и окалиной, по-разному освещаться, неожиданно бликовать. Правда, производство - это не совсем неупорядоченная система. Во-первых, здесь оперируют деталями, часто имеющими достаточно правильную форму, во-вторых, мы вправе потребовать введения некоторых элементов порядка, которые хотя и будут носить частный характер, однако могут привести к резкому упрощению задачи.
"Иногда кибернетики, занимающиеся проблемами "очувствления" роботов, не чувствуют особенностей производства и работают над отвлеченными проблемами, интересными с точки зрения математики, но далекими от практики. Например, сортировка деталей различной формы или размеров, уложенных в один ящик.
Но ведь такой ситуации производственники всячески избегают. Зачем смешивать то, что потом придется сортировать? Задача "узнавания" детали тоже не слишком актуальна. На производстве всегда можно ввести в систему управления робота полные сведения о геометрии деталей, которые ему поданы, ведь и рабочему вместе с заготовками дается чертеж. Правда, есть разновидность этих задач, имеющая практический смысл, - определение положения известной детали", - говорит ведущий конструктор ЭНИМС С. Житомирский.
Если форма детали известна заранее, то ее положение можно проанализировать, употребив некоторые искусственные приемы, которые позволяют обходиться более простыми алгоритмами.
Вот, например, как подошли к решению такой задачи специалисты французской фирмы "Акма": для экспериментов были выбраны заготовки деталей подвески автомобиля - отливки сложной формы. Опыты показали, что на плоскости любая такая деталь может лежать только пятью разными способами, причем каждое положение, будучи отображенным на телеэкране, занимает разную площадь. Таким образом, получив изображение тела, по размеру его площади ЭВМ сразу "узнавала" расположение детали. Дополнительные расчеты давали достаточную информацию для того, чтобы робот мог захватить и сориентировать деталь.
Да, робот второго поколения обладает несомненно более сильным интеллектом. В чем же он проявляется?
Во-первых, в том, что робот выполняет функции, заложенные в нем при "рождении", в очень широком диапазоне условий, не снижая точности и качества работы.
Во-вторых, он всегда, при всех условиях действует в наиболее выгодных оптимальных режимах.
Рассмотрим пример из области сварки. Рабочий сваривает любые изделия из материала различной толщины, изменяя режим сварки и выбирая электроды на глазок. Опытный сварщик делает это мастерски, хотя и медленно; менее опытный может ошибаться, следствием чего явится брак. Робот первого поколения, действующий по "жесткой" программе, производит сварку намного быстрее человека, но он не меняет режимов работы.
Если толщина пришедшей к нему детали немного изменилась, он, не обладая соответствующими чувствительными элементами, просто "не знает" этого. Следовательно, быстрота операций возрастает, но с качеством дело обстоит хуже: если допуск на поступающие изделия очень широк, то доля брака может даже увеличиться.
Робот-сварщик второго поколения с помощью специальных устройств "осматривает" деталь, оценивает изменения ее внешних параметров, затем автоматически настраивается на такой режим работы, который обеспечивает наивысшее качество сварки.
Другой робот, имеющий специальность контролера, проверяет работу "сварщика". От такого объединения роботов в комплексе получается значительный выигрыш.
"Узкие места" технологического процесса довольно часто проявляются при воздействии сильных помех. Например, при изменении напряжения в сети может резко ухудшиться качество - в результате появится брак. Роботы второго поколения должны "парировать" подобные помехи. Но для этого они должны быть снабжены датчиками, сигнализирующими о тех или иных отклонениях, и логическими устройствами, обрабатывающими полученную информацию и изменяющими режим работы.
Есть еще один источник брака и даже остановки технологического процесса - отказы в системах. Сложная система, в которой произошел отказ, может взбунтоваться, стать опасной, угрожать аварией или даже катастрофой, как в известной ситуации, описанной К. Чапеком.
Снизить опасность отказов позволяет дублирование: параллельное подключение резервных систем, переключение на которые осуществляют специальные логические устройства, обнаруживающие отказы. Впрочем, эти устройства также надо защищать от отказов...
В ОКБ технической кибернетики Ленинградского политехнического института с 1968 года ведутся работы по созданию и исследованию процессов управления очувствленными роботами. Для изучения процесса роботизированной сборки используется образец робота со схватом, оснащенным ультразвуковыми датчиками. Это упрощенное ультразвуковое "зрение" позволяет роботу увидеть детали на рабочем столе, автоматически навести схват на деталь, центрировать схват относительно детали для ее точного взятия, определить тип детали по ее характеристическому размеру, правильно ориентировать схват относительно поверхности сборочного стола и базовой оси сборки.
Вот в процессе работы робот обнаружил очередную группу деталей на рабочем столе. Он ловко берет ближайшую из них, "узнает" ее тип по размеру сомкнутого схвата, устанавливает деталь на собираемый узел или откладывает в промежуточный накопитель, чтобы сразу же взять ее, когда она потребуется по программе сборки. Необходимая для работы информация: последовательность сборки, эталоны размеров детали, координаты "жестких" точек рабочей зоны задаются и фиксируются с помощью потенциометров. Образец этого робота предназначен для исследования процессов функционирования простых, легко перепрограммируемых сборочных автоматов.
Популярность электронно-механических роботов второго поколения растет с каждым годом. Чтобы быстрее приспосабливать их к разным операциям, их собирают из стандартных модулей, снабжая широким набором универсальных приспособлений. Оригинальную конструкцию для радиоэлектронной промышленности предложили инженеры фирмы "Сормель" (Франция). Восемь встроенных головок различного назначения, подключение и взаимодействие которых определяется заложенной в компьютер программой, позволяют собирать изделия из деталей, размер которых измеряется миллиметрами, а вес - долями грамма.
Роботы второго поколения, оснащенные столь мощным набором сенсорных датчиков и соответствующим компьютером, значительно превосходят по своим возможностям роботов первого поколения: они могут работать с неориентированными деталями произвольной формы, осуществлять сборочные и монтажные операции, собирать информацию о неизвестной и меняющейся среде. Однако, несмотря на это, они, вообще говоря, не должны заменить роботов первого поколения во всех сферах их приложения. Оба поколения роботов взаимно дополняют друг друга, выполняют действия различной сложности при различной степени информированности о внешней среде. Их совокупность представляет собой весьма гибкую систему, позволяющую автоматизировать подавляющее большинство ручных операций в сфере производства.
ОБРАТНАЯ СВЯЗЬ - ПОСОХ СЛЕПОГО
Прикоснувшись к горячему предмету, мы автоматически отдергиваем руку. Действительно ли ее отдергиваем мы? Точнее было бы сказать, что рука отдергивается сама, не дожидаясь нашей команды, "автоматически". Этот простой пример показывает и объясняет тот факт, что большинство "очувствленных" задач может быть решено при весьма скромном интеллекте. Вместе с тем гамма роботов второго поколения весьма расплывчата: с одной стороны - это любой манипулятор, имеющий мало-мальски простой датчик и использующий его в процессе функционирования для адаптации к изменяющейся обстановке; с другой стороны, сама адаптация - это настолько разветвленный и сложный процесс, что границы адаптивной способности у робота просто нет, своей адаптационной осью робот второго поколения заходит уже в сферу жизни третьего. Но здесь мы будем все еще говорить о втором поколении роботов, а именно о принципах их управления.
Управление очувствленным роботом базируется на идее обратной связи. Это фундаментальнейшая идея кибернетики. Управление роботом первого поколения можно охарактеризовать как прямую связь: робот воздействует на объект манипулирования. Благодаря наличию чувств роботу второго поколения доступна и обратная связь: объект манипулирования "воздействует" на робота. Закон управления очувствленным роботом является функцией текущего состояния робота и состояния внешней среды. Для решения задачи управления очувствленным роботом уже невозможно ограничиться только запоминающим и программирующим устройством, как в роботах первого поколения. Система управления очувствленного робота должна решать новый класс задач: обработку и анализ информации, поступающей от искусственных органов чувств, и управление исполнительными приводами с учетом этой информации, использованием принципов обратной связи. Описанная схема управления с обратной связью напоминает открытую И. Павловым схему формирования условных рефлексов у животных. Такое единство живого и неживого организмов - одна из фундаментальных аксиом кибернетики. Часть сенсорных сигналов о внешней среде, поступающих через органы чувств в "мозг" робота, можно считать аналогичными безусловным раздражителям по терминологии И. Павлова. Это, например, сигналы о наличии детали, с которой должен "общаться" робот.
Другая часть сигналов - "условные раздражители", например определенные звуковые, зрительные или другие информационные сигналы.
В результате обучения робота (а заметим, что очувствленный робот рождается не со знанием, а лишь со способностью учиться, опираясь на свои органы чувств) определенному сочетанию безусловных и условных раздражителей ставится в соответствие некоторая реакция.
Таким образом складываются внутренние рефлекторные связи "ситуации реакции". Они играют роль, именно играют роль, а не являются на самом деле, представлений робота о внешнем мире и о своих собственных возможностях взаимодействия с ним.
Обучение робота, то есть формирование совокупности связей "ситуации реакции", производится человеком. Под текущей ситуацией понимается значение совокупности сигналов, сформированных сенсорной системой. Класс ситуаций характеризуется тем свойством, что любая ситуация из одного и того же класса обусловливает одну и ту же реакцию (из класса необходимых реакций). Такая правильно выбранная реакция называется адекватной данной ситуации. Структура и функционирование системы управления очувствленным роботом имеет три эшелона.
Верхний - распознавание и анализ ситуации. От того, к какому классу принадлежит ситуация, зависит планирование реакций, которую робот "мыслит" как достаточно адекватную.
Второй эшелон управления получает на вход значение желаемой реакции и формирует соответствующее программное движение, строит план - желаемый закон изменения координат исполнительных механизмов с учетом возможных препятствий и ограничений.
И, наконец, третий обеспечивает осуществление выбранного движения.
Рассмотренная структура управления "ситуации - реакции" позволяет очувствленному роботу гибко приспосабливать свое поведение к складывающейся, порой резко меняющейся обстановке. Может создаться впечатление, что с помощью совокупности связей "ситуации - реакции" можно организовать любое, сколь угодно сложное целенаправленное поведение робота. Достаточно лишь вложить в память управляющей системы побольше таких связей.
К сожалению, такая концепция слишком оптимистична. Произвольное число "реактивных" связей позволяет совершать лишь те действия, для которых с самого начала были предусмотрены условные или безусловные раздражители. Формирование сложных действий в ответ на сложные сенсорные ситуации представляет собой самостоятельную, сложную проблему.
Для большинства интеллектуальных задач, для которых невозможно заранее сформировать однозначные алгоритмы их решений, невозможно и задать реализуюющие этот алгоритм наборы связей "ситуации - реакции".
ТРЕТЬЕ ПОКОЛЕНИЕ
РОБОТЫ - ИНТЕЛЛЕКТУАЛЫ
Я МЫСЛЮ - СЛЕДОВАТЕЛЬНО, Я СУЩЕСТВУЮ
Интеллектуальный робот третьего поколения - своеобразное кибернетическое "живое" существо, разумеется, если понимать этот термин достаточно широко. Рассмотрим основные органы этого существа.
Оно наделено рецепторами - разнообразными датчиками внешней и внутренней информации: зрением, слухом, осязанием, обонянием. Кроме рецепторов, оно имеет эффекторы - средства воздействия на окружаюшую среду. Это мышцы, или сервомоторы, приводящие в действие разнообразные конечности: руки, ноги, хобот, щупальца и т. д.
Главным в таком организме является достаточно развитый мозг, роль которого играет центральный компьютер. Компьютер, кроме всего прочего, имеет непосредственную связь с человеком - оператором. Самое главное, что такой робот обладает вполне целесообразным поведением; по крайней мере, он не глупее обезьяны. Этот организм и есть истинный робот, какую бы физическую форму он ни имел.
Чтобы отличать его от всех других роботов, с которыми мы до сих пор встречались на страницах этой книги, мы будем называть его "кибер", ибо породившая его наука - кибернетика - как раз и постулирует факт универсального единства живого и неживого целенаправленного поведения. Недаром один из создателей интеллектуальных роботов писал: "Робот - это функциональное описание системы, которая до недавнего времени могла быть получена лишь в результате роста живых клеток, а теперь начинает становиться чем-то, что мы можем сами изготовлять".
Кибер способен понимать человеческий язык, на котором ведет диалог с оператором, он сам формируете своем "сознании" довольно подробную модель внешней среды - реальной обстановки, в которой ему приходится "жить". Он может анализировать сложившуюся ситуацию, планировать свои действия для достижения поставленной оператором общей цели, намечать желаемые движения и реализовывать их в условиях неполной информации и быстро меняющейся ситуации.
Стоит заметить, что мы еще далеки от того, чтобы охватить человеческое мышление во всей его глубине.
Тем не менее некоторые исследователи пытаются создать некий "микромир", который вычислительная машина все-таки могла бы понимать.
Вот, например, робот, созданный Д. Уиногрэдом в лаборатории искусственного интеллекта Массачусетского технологического института. Он пытается целиком и полностью освоить игру в кубики: их расстановку и перемещение, геометрические конструкции - в той мере, в какой это знакомо ребенку. Эта машина способна самостоятельно передвигаться и брать определенные предметы. Она "видит" и анализирует увиденное. Она повинуется командам и отвечает на вопросы на человеческом языке. И что всего важнее, автомат способен к "пониманию".
Рассмотрим пример взаимопонимания этого робота и человека, взятый из книги Б. Бирюкова и М. Гутчина "Машина и творчество".
Человек. Подними большой красный блок.
Робот. Хорошо (прежде чем поднять красный блок, машине приходится его освободить: найти место для зеленого блока, лежащего на красном, и перенести его).
Человек. Схвати пирамиду.
Робот. Я не знаю, какую пирамиду вы имеете в виду (так как имеются три пирамиды, робот ничего не делает).
Человек. Найди блок, который выше, чем тот, который ты держишь, и поставь его в ящик.
Робот. Хорошо ("рука" робота опускает красный блок и, поднимая высокий голубой блок, ставит его в ящик).
Человек. Что находится в ящике?
Робот. Голубая пирамида и голубой блок.
Человек. Что поддерживает пирамиду?
Робот. Ящик (такой ответ дан потому, что если раньше программа не знала, о какой пирамиде идет речь, то сейчас предполагает, что мы имеем в виду ту пирамиду, которая только что была упомянута).
Человек. Сколько блоков не находится в ящике?
Робот. Четыре.
Человек. Является ли по крайней мере один из них более узким, чем тот, который я просил тебя поднять?
Робот. Да, красный куб.
Человек. Он опирается на что-либо?
Робот. Да, на стол.
Человек. Может ли стол поднимать блоки?
Робот. Нет.
Человек. Может ли пирамида опираться на блок?
Робот. Да (дедуктивная система находит реальный пример и поэтому знает, что это возможно).
Человек. Может ли пирамида опираться на пирамиду?
Робот. Я не знаю (таких примеров на сцене нет).
Человек. Собери вместе (поставь друг на друга) две пирамиды.
Робот. Я не могу (робот пробует, но терпит неудачу).
Человек. Голубая пирамида - моя.
Робот. Я понимаю.
Человек. Моими являются блоки, цвет которых не красный, но то, что поддерживает пирамиду, не является моим.
Робот. Я понимаю (строятся две новые теоремы, касающиеся вопросов собственности - чей, кому принадлежит).
Человек. Ящик мой?
Робот. Нет.
Человек. Что-нибудь находящееся в ящике является моим?
Робот. Да, два предмета: голубой блок и голубая пирамида.
Человек. Не соберешь ли ты вместе оба красных блока, а также зеленый куб и пирамиду?
Робот. Хорошо (робот выбирает зеленый куб, на котором ничего нет, ставит его на большой красный блок, после чего снимает маленькую пирамиду с маленького красного куба и использует его для завершения указания).
Мы только что познакомились с отрывком из работы американского кибернетика по фамилии Уиногрэд (такова ее английская транскрипция, однако иногда его фамилию переводят просто как Виноград). Про эту работу М. Минский на советско-американской конференции сказал: "За последние десять лет мы увеличили разум ЭВМ в 106 раз, и я просто как игрок в покер скажу, что на руках у меня имеются доказательства существования искусственного разума. Это докторская диссертация Т. Уиногрэда из Массачусетского технологического института... В ней мы находим программу для вычислительной машины, обладающей небольшой, но все же заметной долей человеческого разума".
Однако, несмотря на видимые успехи искусственного интеллекта роботов, крупный вексель, выданный кибернетиками, еще не оплачен. И дело здесь не только в недостаточном быстродействии ЭВМ или в малом ассортименте сенсорных датчиков. Причина в другом: не хватает конструктивных идей для построения программ разумного поведения роботов. Ведь процессы мышления человека при решении даже самых тривиальных задач еще не разгаданы. Процесс самопознания интеллекта человека продвигается чрезвычайно медленно. Задача "познай самого себя" становится камнем преткновения на пути развития человекоподобных мыслящих устройств.
Проблема создания интеллектуальных роботов, "живущих" в среде, обладающей свойствами неопределенности, привела в последние годы к глубокому осознанию и даже самоосознанию процессов подобного рода, происходящих в биологических системах, в мозгу животных и человека. В результате появилась концепция иерархических адаптивных систем управления, которая эффективно развивается как фундамент организации целесообразного поведения роботов, наделенных интеллектом. Каким образом наш мозг управляет нашим телом, которое даже при грубой оценке с чисто механических позиций имеет более 200 степеней свободы? Как он командует каждой мышцей при выполнении сложных движений, когда мы пишем, ходим, бегаем, плывем, играем на рояле? Как успевает он переработать в минимальное время столь большой объем информации? А никак. Мозг, наш центральный процессор, "выше" этого.
Он вообще не контролирует действия отдельных двигательных единиц нашего тела. Детализация движений происходит на уровнях гораздо более низких, чем кора больших полушарий. Это похоже на программирование на языке высокого уровня, где достаточно указать "цикл от 1 до 20 с шагом 1", а машина сама развернет эту команду цикла в детализированную систему операций. Наиболее очевидные распоряжения типа "прикоснешься к горячему - отдерни руку" происходят даже без осознания их мозгом.
Такое распределение функций, представляющее собой распределение крупной задачи между несколькими уровнями, гораздо выгоднее, экономнее, оперативнее, чем жестко централизованное, когда управляющий орган точно предписывает необходимое действие каждому из составляющих систему элементов. При решении серьезных задач такой централизованный мозг оказался бы настолько сложным, что едва ли уместился бы не только в черепной коробке, но даже во всем теле человека.
При выполнении тех или иных сложных движений мы складываем их из некоторых обобщенных кирпичиков: встать, сесть, шаг правой, шаг левой. Обучение ребенка всему многообразию движений сводится к формированию и закреплению в его "памяти" соответствующих кирпичиков. Кстати, аналогично организуется и процесс восприятия. Чувственный образ - это определенная последовательность или комбинация звуковых, зрительных или обонятельных импульсов (лошадь, человек) или их комбинации (человек на лошади или кентавр.)
Другой общий принцип организации управления в сложных биологических системах - это способность к обучению, адаптация к заранее неизвестным, меняющимся в довольно широких пределах условиям жизни.
Способность к адаптации присуща не только организму в целом, но и отдельным его органам и даже функциям. Эта способность незаменима в тех случаях, когда одна и та же проблема должна решаться многократно. Таким образом, феномен адаптации играет существенную роль в целесообразном поведении всего живого.
В начале нашего века зоопсихолог Э. Торндайк провел следующий эксперимент с животными. Имелся Т-образный лабиринт с тремя площадками. На площадку, находившуюся в основании буквы Т, помещалось подопытное животное, а на две другие площадки, находившиеся у концов горизонтальной перекладины буквы Т, помещалась приманка. Животное могло делать альтернативный выбор: добежав до развилки, оно могло повернуть к левой площадке или к правой площадке.
Но по пути к приманке его ожидала неприятность.
В стенки коридора были вмонтированы электроды.
С некоторой фиксированной вероятностью на них подавалось напряжение, и тогда пробегавшее мимо них животное получало болевое раздражение - среда выдавала сигнал наказания. Сигналом же поощрения среды была та пища, которая ожидала животное на конечной площадке. Если в эксперименте вероятность раздражения в одном из коридоров (например, в левом) намного превосходила вероятность такого раздражения в другом коридоре (в правом), то естественно было бы считать, что животное адаптируется к условиям среды: после серии пробежек оно будет предпочитать поворачивать в правый коридор, а не в левый. Больше всего Э. Торндайк экспериментировал с крысами. Оказалось, что они быстрее оценивают более безопасный путь и уверенно выбирают его даже при небольшой разнице наказаний.
Другие подопытные животные делали это с разной степенью адаптивности, но способность эта оказалась присущей всем видам животных, участвующих в экспериментах.
Проблема управления интеллектуальным роботом заключается, таким образом, в моделировании способности животного и человека к адаптации.
Иерархическая организация управления роботами - это прежде всего распределение функций восприятия, обработки информации и управления между отдельными уровнями иерархии и подсистемами роботов. Полностью централизованные алгоритмы обработки информации и управления при больших объемах обработки, свойственных роботам третьего поколения, оказываются малоэффективными или даже непригодными. Таким образом, возникновение иерархической адаптивной структуры диктуется в первую очередь стремлением повысить качество управления роботом, то есть уменьшить уровень неопределенности и увеличить быстродействие.
Для функционирования отдельных уровней и подсистем необходим значительно меньший объем информации.
Так возникает распараллеливание алгоритмов, что и позволяет решить задачу в условиях существенно меньшей неопределенности.
Итак, для активной жизни роботов третьего поколения жизненно необходимы "хорошие мозги", ибо именно от степени интеллектуальности робота зависит принадлежность его к тому или иному поколению. Существует даже весьма обоснованная классификация роботов в зависимости от функций его электронного мозга.
Управляемые роботы. Роботы "нулевого поколения" - управляемые человеком манипуляторы - не обладают, естественно, никакими свойствами интеллектуальности - все заключено в операторе.
Обучаемые роботы. Роботы первого поколения имеют память. План и порядок действий задает человек - оператор, а робот всего лишь запоминает (способность обучаться) и воспроизводит.
Очувствленные роботы. План действий задает человек, а робот, запомнив план, вычисляет конкретный порядок действий в зависимости от тех или иных данных внешней среды (обратная связь).
Интеллектуальные роботы. Человек задает лишь цель, а робот сам составляет план операции, определяет порядок действий с учетом реальных условий и превращает действия в движения исполнительных механизмов. Для этого роботу необходимо иметь не только широкую систему чувств, не только интеллект, но и модель окружающей действительности и даже модель самого себя (сознание и самосознание робота).
КАК РОБОТЫ НАБИРАЛИСЬ УМА
"Представление о том, что компьютеры делают только то, что им диктуют люди, обманчиво. Если вы не можете сказать компьютеру, как сделать что-то самым лучшим образом, то вы оОязываете его испробовать множество подходов. И если кто-то потом будет говорить, что машина действовала так, как ей было сказано, в этом будут содержаться двусмысленности. Ведь вы не устанавливали и не могли знать, какой из подходов изберет машина", указывает М. Минский, специалист в области искусственного интеллекта.
Обычные вычислительные машины, которые обрабатывают счета за электричество или производят банковские операции, - это всего лишь счетные устройства: быстродействующие, но абсолютно неразумные. Вся их программа содержит лишь список команд, которые они безошибочно выполняют.
В некоторых научно-исследовательских центрах уже имеются другие вычислительные машины, внешне очень похожие на прежние, но в них заложены более сложные программы. Ученые начиняют машину информацией и учат ее "мыслить". Такие машины, наделенные "разумом", постепенно смогут имитировать многие наши способности, а в некоторых случаях даже превзойти их. В скором времени, возможно, это будут роботы, которые начнут рассуждать, понимать, приобретут способность учиться, а после этого попытаются изменить наши представления о жизни и даже о сам-их себе.
Исследователи во всем мире занимаются этой проблемой вот уже в течение 25 лет. Во время второй мировой войны английский математик А. Тьюринг изобрел машину - прародительницу современных вычислительных машин. Это была система, способная расшифровывать вражеские сообщения. Всю свою жизнь изобретатель затем мечтал о создании такой машины, которая была бы способна учиться и стать разумной.
То, что сейчас называют первым "искусственным мозгом", родилось в проектах другого известного математика- Дж. фон Неймана в октябре 1945 года в Принстоне. Он так же, как и его будущие последователи, был увлечен психологией и неврологией. После бесплодных попыток создать математическую модель человеческого поведения он потерял веру в возможность создания "искусственного разума", элементы первых громоздких вычислительных устройств имели настолько большие размеры, что Дж. фон Нейман не в состоянии был решить вопрос - каким образом заменить ими ничтожно малые нервные клетки.
Поскольку в те времена человеческий мозг рассматривали как нечто сотканное из взаимосвязанных нейронов, его можно было представить в виде какого-то вычислительного устройства, в котором циркулирует не энергия, а информация. Если принять такую аналогию, рассуждали ученые, то почему бы не придумать систему, в которой разум будет зарождаться в результате прохождения через нее информации?
Выдвигались самые различные теории относительно искусственного мышления. Физик Д. Мак-Кей предложил, например, интересный метод аналогий и вероятностей, пользуясь которым машина могла бы мыслить, используя логические элементы, двоичные или недвоичные.
Этот метод вполне заслуженно был оценен как слишком упрощенный для точного моделирования человеческого мышления.
На первой крупной конференции ученых, работающих в этой области, которая состоялась еще в 1956 году, многие ее участники высказались за принятие термина "искусственный разум", чтобы хоть как-то определить предмет своих исследований. При этом не обошлось без бурных дебатов. Хотя все присутствующие верили в возможность передачи кое-чего, что пока находится лишь в компетенции человека, своим еще примитивным вычислительным машинам, они были далеки от того, чтобы прийти к единому мнению относительно средств достижения этой возможности. Одни полагали, что необходимо начать с постановки машинам простых задач, другие считали, что прежде всего следует разработать теорию и построить модель человеческого мозга...
Два никому не известных исследователя, А. Невелл и Г. Саймон, выдвинули совсем необычную идею. Они изучали, каким образом два человека могут общаться друг с другом с помощью системы сигнализаторов и кнопок. Эта система должна была раскладывать их поведение на серию простых и логических операций. Поскольку большая вычислительная машина была установлена в том же помещении, где работали оба исследователя, они развлекались тем, что ставили свой эксперимент с ног на голову: вводили в машину простые логические правила, чтобы заставить ее выработать в себе способность к более сложным рассуждениям. Это была гениальная мысль; программа не только работала, но с ее помощью было открыто новое доказательство одной теоремы: оно было совершенно неожиданным и намного более элегантным, чем до этого существующее.
А. Невелл и Г. Саймон открыли основополагающий принцип: нет необходимости в том, чтобы понять человеческий мозг для передачи разума машине. Необходимо изучать не то, как работает наш мозг, а то, что он делает. Нужно проанализировать человеческое поведение и исследовать процесс приобретения им знаний, а не разрабатывать теорию относительно сети нейронов.
Короче говоря, предпочтение отдается психологии, а не физиологии.
Начиная с этого времени исследователи пошли по пути, открытому А. Невеллом и Г. Саймоном, что, однако, не мешает им постоянно спорить по поводу различных способов заставить "думать" вычислительную машину.
Последователи одной школы - она основана на логике - пытаются расчленить процесс рассуждения на серию логических предложений. Машина "продвигается" от одного предложения к другому, делая последовательные выводы, сравнимые с известным силлогизмом:
"Все люди смертны; Сократ - человек, следовательно, Сократ смертен".
Машина еще далека от того, чтобы приобрести те общие знания, которыми обладает даже малолетний ребенок. И достигнут ли вообще когда-нибудь машины уровня развития ребенка? Этот вопрос уже давно разделил ученых на два лагеря. В Беркли преподаватель философии X. Дрейфус стал во главе радикальной оппозиции приверженцам идеи "искусственного разума". Он поставил их науку в один ряд с алхимией. "Никогда не удастся запрограммировать нашу мысль, - заявляет он, - хотя бы по той простой причине, что мы растем в реальном мире, в обществе, мы познаем мир вместе с нашим телом, мы не состоим из одного только разума!
Машина может знать, что такое "ресторан", - продолжает он, - но она не в состоянии знать, ест ли посетитель ногами. Или как приближается к столу официантка: в полете или ползком? Никогда машина не будет иметь столько знаний, чтобы охватить мир во всем его многообразии!"
Но сотрудник Массачусетского технологического института М. Минский отказывается верить в то, что разум машин ограничен. Когда его спрашивают, что же он понимает под термином "искусственный разум", он, таинственно улыбаясь, отвечает:
"Это наука, которая заставляет делать машины то, что человек считает интеллектуальным, когда делает то же самое". Этот ученый объединил вокруг себя еще нескольких исследователей, также работающих над созданием искусственного разума. Будучи физиком и математиком, он изучил психологию, неврологию и социологию. Когда-то своими руками он сконструировал машину на базе электронных ламп, участвовал в разработке "Персептрона", некоего подобия искусственного ученика. Совместно с математиком С. Пейпертом он был также автором обучающей системы для детей.
Сейчас М. Минский уже не заводит разговор о машинах. Тема его бесед человек; когда он говорит, взгляд его кажется отсутствующим, он как бы прослеживает внутри себя весь ход своих собственных рассуждений. "Искусственный разум - это новый вид психологии", - замечает М. Минский. Она представляется ему платформой экспериментальной науки, которая использует вычислительную машину как средство моделирования с целью постижения природы человеческого мышления.
"Наши основные знания нигде не записаны, - утверждает М. Минский. - Все знают, что для того, чтобы взять книгу, нужно протянуть руку. Но этого не найдешь ни в одной энциклопедии. А вычислительная машина не может этого знать".
М. Минский и его студенты пытались, например, определить такое простое на первый взгляд понятие, как "вода". Это оказалось настоящей головоломкой. Необходимо знать, что вода - это жидкость, что ее уровень горизонтален, что ее количество не изменится, если ее перелить из одного сосуда в другой, но она вытечет из дырявого сосуда, может замочить одежду и т. д.
И вот вычислительная машина, получившая самую общую информацию о воде, "постаралась" дать ответ на один очень важный вопрос: "Что случится, если наклонить стакан, заполненный водой?" Машина очень хорошо изображала на своем экране стакан, опрокинутый до горизонтального положения, и, несмотря на "известный" ей закон тяготения, упорно показывала на экране опрокинутый стакан, жидкость из которого никак не выливалась. И она никогда не сможет познать на горьком, но таком поучительном опыте то неприятное ощущение, какое испытывает человек, когда вода заливает одежду. Вычислительная машина более охотно воспринимает чисто книжные знания.
Именно такие исследования проводит группа ученых под руководством психолога Р. Шэнка. Здесь машина учится читать и обобщать текст, разумеется, при постановке вопросов в письменном виде. Она делает переводы как с английского языка на другие, так и наоборот; упражняется в ведении беседы, в искусстве аргументирования и даже начинает заучивать слова.
КИБЕРНЕТИЧЕСКИЙ ДИАЛОГ
- Почему ты вчера вернулся так поздно? - недовольно спрашивает Мэгпай.
- Я ходил в кегельбан, - отвечает Скотт Робертсон, ее муж, не обращая внимания на вызывающий тон.
- А я думала, что ты испытываешь отвращение к этой игре, - коварно замечает Мэгпай.
- Когда я в компании, то не испытываю.
- А я к этой компании не отношусь?
Скотт слабо протестует:
- Это ведь не одно и то же.
- Разумеется, потому что ты не можешь найти себе женщин у себя дома!
Происшедшая семейная сцена была бы самой обычной, если бы эта ревнивая американка не оказалась... ЭВМ.
Мэгпай - Сорока - это программа для вычислительной машины, которой отведена роль сварливой супруги, озабоченной тем, чтобы "приструнить" своего подставного мужа, молодого психолога Йельского университета, который ведет с "ней" диалог посредством клавиатуры.
Эта машина не хранит в своем запоминающем устройстве заготовленные и стереотипные фразы. Она сама формирует ответы. Она аргументирует, "размышляет", и в этом она в какой-то степени уподобляется человеческому существу. Машина "мыслит" своим особым способом. Опираясь на психологию и информатику, ученые поставили перед собой по меньшей мере честолюбивую задачу: изучить образ мышления человека и его поведение, чтобы затем воспроизвести их искусственно.
Когда мы говорим слова "искусственный интеллект", то немедленно возникает аналогия с чем-то ненастоящим. Вспомним, с каким оттенком мы произносим слова "искусственная пища" или "искусственная трава".
Термин же "искусственный интеллект" затрагивает нас до глубины души, ибо единственный интеллект, который нам известен, - это наш собственный, естественный. Может быть, поэтому проблема создания искусственного интеллекта вызвала столько споров и публикаций. Число публикаций, посвященных проблеме "возможен ли искусственный интеллект", приближается к числу публикаций, посвященных конкретным научным результатам в этой области. Человек яростно защищает один из последних бастионов своего человеческого от нашествия машинного. Дело осложняется еще и тем, что термин "искусственный интеллект" чисто условный. Это понятие до сих пор не определено. Остроумное определение типа "наука, которая заставляет делать машину то, что человек считает интеллектуальным, когда делает это сам", к сожалению, малоконструктивно, а иногда и прямо заводит исследователей в болото практического формализма.
Известно, сколько шума и научной суеты породил знаменитый тест Тюринга "Если я не догадаюсь, что со мной беседует машина, то эта машина уже достигла интеллектуального уровня человека". Чтобы исключить проблему машинной речи, такой диалог лучше вести с помощью телетайпа. Для многих кибернетиков, как казалось, недосягаемый тюринговский уровень открыл блестящую перспективу. Как из рога изобилия посыпались различные электронные собеседники. В конце 60-х годов американский кибернетик, преподаватель Массачусетского технологического института Дж. Вейценбаум изготовил несколько программ, основная цель которых в условиях теста Тюринга - сбить с толку придирчивого эксперта. В основе этой работы лежит идея псевдореального диалога. При таком диалоге имеется только видимость беседы. "Собеседник" фактически не вникает в смысл сообщаемого, а строит свой ответ на основе несложного формального преобразования услышанного.
- Прийти к вам мне посоветовал приятель; он говорит, что это несколько развлечет меня, - говорит исследователь.
- Прийти сюда посоветовал ваш приятель? - удивляется машина.
- Он говорит, что у меня вечно депрессия.
- Мне очень жаль, что у вас депрессия.
Дж. Вейценбаум придумал свою обворожительную "Элизу" после того, как досконально изучил скучные салонные беседы. Он заметил, что некоторые из его соотечественников обладают способностью отвечать собеседнику, не проявляя при этом к нему никакого интереса, но они все же очень хорошо умеют поддерживать диалог. "Элиза", унаследовавшая эту способность, отыскивает в вопросах ключевые слова, формируя после этого стереотипные ответы, которые кажутся вполне уместными. "Дама", таким образом, наделена некоторым интеллектом, но на самом деле это лишь ограниченная притворщица. "Элиза" очень проста: определенные ключевые слова во фразе человека заставляют ее реагировать, подставляя определенные речевые обороты.
Например, если машина читает предложение: "Ты неизвестно что", она отвечает: "Почему вы думаете, что я неизвестно что?" Велеречивая "Элиза" просто салонная болтунья.
В отличие от нее "Пэрри" - программа, созданная К. Колби в Стенфордском университете, призвана помочь начинающим психиатрам приобрести некоторый опыт в беседе с тяжело больными пациентами. Программа моделирует человека, страдающего манией преследования. В программу заложена определенная биография. Пэрри 28 лет, он холост, работает на почте. Он легко раним, чувствителен ко всему, что касается его внешности, образования, убеждений. Его любимые занятия - кино и скачки. Как-то он набросился на букмекера, заведующего ставками на ипподроме, из-за того, что тот не выплатил ему выигрыша, и с тех пор страшится мести преступного мира. Во время разговора эмоциональное состояние Пэрри часто меняется. Если ведущий беседу человек слишком часто затрагивает "больные места", Пэрри начинает волноваться, у него появляются симптомы паранойи.
- Вы боитесь преступного мира?
- Мафия - самые страшные гангстеры.
- Вы связаны с мафией?
- Видите ли, они меня знают.
- Откуда они вас знают?
- Они следят за мной.
- Почему?
- Хотят сочинить что-то обо мне, чтобы меня посадили.
- Что они имеют против вас?
- Они хотят со мной покончить.
- Почему?
- У меня есть против мафии кое-какие улики.
Когда группе психиатров была предоставлена возможность побеседовать посредством телетайпа с настоящим больным и с программой Пэрри одновременно, то они, хотя и знали, что один из собеседников - машина, не могли отгадать, кто именно. Таким образом, тест Тюринга начал действовать.
Интересное событие произошло позже, когда уже упомянутый нами Дж. Вейценбаум создал модель врача-психиатра для лечения некоторых больных с признаками расстройства типа неврозов. Возникла идея "вылечить" Пэрри с помощью программы врача. Вот пример происходящего между ними диалога:
В. Здравствуйте. Расскажите, на что вы жалуетесь.
П. Люди иногда действуют мне на нервы.
В. Я не уверен, что полностью вас понимаю.
П. Вам следует быть повнимательнее.
В. Пожалуйста, продолжайте.
П. Как-то я пошел на ипподром в Бэй-Медоус.
В. И с чем вы это связываете?
П. Я пошел на скачки.
В. Что еще вы хотели бы обсудить?
П. Я интересуюсь скачками.
В. Почему вы это говорите?
П. Там жульничают в игре.
В. Я не уверен, что полностью вас понимаю.
П. Вы настоящий зануда.
В. Вам нравится считать меня настоящим занудой?
П. Я сыт по горло.
В. И с чем вы это связываете?
П. До свидания.
В. Мне было очень приятно с вами познакомиться.
С вас 399 долларов 25 центов.
Неплохой диалог, хотя доктор немного "плавает".
Программисты надеются со временем настолько усовершенствовать программу "Пэрри", чтобы молодые врачи в процессе диалога могли "вылечить" искусственного больного, и тогда студенты смогут практиковаться в разговоре с машиной, не подвергая действительно больных людей риску пострадать от неумелого лечения.
Еще важнее научить машину улавливать суть того или иного сообщения. Различают два типа общения с компьютером: ограниченная беседа и ограниченное понимание. При ограниченной беседе машина "понимает" все, что ей говорят, но лишь в случае, если затрагивается определенная тема скажем, шахматные ходы или построение конструкций из кубиков. При ограниченном понимании можно разговаривать с машиной о чем угодно, но она далеко не всегда вас полностью поймет. Именно такова программа "Элиза", разработанная Дж. Вейценбаумом. "Элиза" способна лишь на поверхностное понимание предметов и явлений.
Однако по мере развития теории и практики кибернетического диалога речь машины становится все более и более осмысленной. Вспомним ревнивую Мэгпай, которой начинался этот параграф. Тест Тюринга начал срабатывать все чаще и чаще.
Вице-президент одной американской компании, занимающейся производством ЭВМ, сам того не подозревая, оказался подвергнут тестированию по критерию Тюринга. Вот какой диалог по телетайпной связи произошел у вице-президента с системным программистом Д. Бобровым, сотрудником той же компании:
В-пр. Нельзя ли мне сейчас воспользоваться ЭВМ?
Бобров. Почему вы спрашиваете?
В-пр. Может быть, мне удастся заключить сделку.
Бобров. Почему вы в этом уверены?
В-пр. Мои предполагаемые покупатели никогда не видели нашу систему в действии.
Бобров. Это имеет для вас большое значение?
В-пр. Конечно.
Бобров. Вы как будто сомневаетесь в этом?
В-пр. Что за нелепое замечание?
Бобров. Что вы имеете в виду, говоря о нелепом замечании?
В-пр. Возражаете ли вы против того, чтобы я сейчас воспользовался ЭВМ?
Бобров. Расскажите мне побольше о ваших предполагаемых покупателях.
В-пр. Позвоните мне 491-18-50.
Когда звонка от Д. Боброва не последовало, разгневанный вице-президент начал отчитывать своего секретаря, и тут выяснилось, что телетайпный коммутатор соединил его не с самим Д. Бобровым, а с той самой системой, которую вице-президент и хотел предложить заказчикам. Таким образом, критерий Тюринга быстро девальвировал в глазах кибернетиков, так и не поведя нас к границам подлинной интеллектуальности компьютеров.
ЗА СОВЕТОМ К РОБОТУ
Пока одни ученые разрабатывали принципы кибернетического диалога, другие практики и прагматики стремились запрячь эту новую способность машины в телегу научно-технического прогресса. Они решили предложить машине некоторый объем знаний из очень конкретной области.
Все полученные машиной элементы информации связаны между собой сложной системой взаимозависимых отношений. Прибегая чаще к аналогиям и заключениям, чем к логическим выводам, машина сортирует, объединяет и синтезирует эти элементы, постепенно развивая свою способность "мыслить".
Первые такие машины появились в конце 50-х годов.
Они доказали около сорока теорем и решали простые задачки типа "постройка детской пирамиды".
Уже в 60-х годах можно было побеседовать о погоде с машиной, имеющей понятие о метеорологии и обладающей знаниями синтаксиса, которые ей необходимы для правильного построения фраз. Когда, например, ей говорили: "Я не люблю дождь летом", она очень вежливо отвечала: "Да, но дождь летом бывает не так часто".
Другая программа, получившая название "Бейсбол", отвечает на все вопросы, связанные с матчами года: место встречи, счет, состав команд. Что касается программы "Сэд Сэм", то она уже стала интересоваться семейными отношениями своих собеседников, правда, не имея о том никакого понятия. И только в 1965 году машина "Сэр" стала больше внимания уделять значению слов, а не их расстановке во фразе. А машина такого же типа "Стьюдент", как хорошо успевающий учащийся, решала уравнения первого порядка, формулируя последовательность их решения на беглом английском языке.
Чем в большей степени вводимые в машину знания относятся к специальной области, тем больше шансов существует за то, чтобы машины их освоили. В настоящее время некоторые из них являются самыми настоящими "экспертами". Они уже помогают специалистам определять, например, насколько богат рудой тот или иной геологический пласт, или ставить диагноз при инфекционном заболевании.
Для создания таких искусственных "специалистов" необходимо передать им знания специалистов-людей.
Но, как это ни парадоксально, главная трудность как раз заключается в том, чтобы "изъять" эти знания из мозга человека. Врач, например, ставит свой диагноз, исходя из опыта, следуя при этом правилам, которыми он пользуется почти бессознательно, автоматически.
И вот исследователи проводят долгие часы, интервьюируя врачей и других специалистов, чтобы затем уяснить для себя основные закономерности, свойственные процессу их мышления. Как только удастся восстановить весь ход их рассуждений, будет относительно несложно воспроизвести его в программе вычислительной машины.
Начиная с 1965 года машина "Дендрал" - первый искусственный "специалист", созданный в Стенфордском университете Э. Файгенбаумом, помогает химикам определять молекулярную структуру веществ. Другой эксперт, "Проспектор" ("Старатель"), тщательно исследует геологические карты и пробы грунта для определения возможных месторождений. В штате Вашингтон им было открыто богатое месторождение молибдена.
Что касается машины "Медцин", ее программа была составлена в 70-х годах, то она ставит диагнозы при инфекционных заболеваниях, если ей сообщат результаты анализов и основные симптомы заболевания. И что самое важное, она в любой момент объяснит причину, по которой ставит именно такой диагноз, а не другой, если таких объяснений потребует от нее пользователь.
В университете Питтсбурга специалист по компьютерам Г. Поупл и специалист по внутренним болезням Дж. Майерс создали программу "Кадуцей", которая содержит в своей памяти больше симптомов болезней, чем смог бы в любом случае запомнить врач. Программа позволяет ЭВМ комбинировать факты, оценки и суждения и ставить сложные диагнозы. Машина ставит диагноз?
Да! И вот тому пример. В этот компьютер были однажды введены детальные сведения о пожилом человеке, доставленном ночью машиной "скорой помощи" в университетскую клинику. У него был плохой вид и одышка. Сердечный приступ? "Это было мое первое предположение", - рассказывал доктор Майерс.
Принимая во внимание картину состояния больного - отсутствие болей в области грудной клетки, перенесенный ранее сердечный приступ, нормальное давление крови, запись в истории болезни о диабете, - компьютер отверг более десятка предположенных заболеваний, предварительно оценив их проявления, а затем на экране появилось сообщение о главном подозрении: "предварительный диагноз - диабет сахарный".
Компьютер запросил об уровне сахара в крови у больного. Довольно высокий. Он задал другие вопросы, чтобы вынести завершающее решение по диабету, а затем объявил: "отвергнуть диагноз - диабет -сахарный".
Далее последовали новые диагностические вопросы о шумах в сердце, о результатах прослушивания дыхания (дыхательных шумов) и рентгеновского просвечивания грудной клетки... Через несколько минут компьютер вынес заключение, что больной является жертвой сердечного приступа. Врачу потребовалось бы несколько дней, чтобы прийти к такому же решению.
В сложных или в необычных случаях "Кадуцей" ставил более правильный диагноз и тщательнее, чем это делали практикующие врачи. По словам доктора Дж. Майерса, компьютер почти всегда соглашался с врачом-специалистом, у которого было достаточно времени, чтобы изучить каждый симптом у пациента.
После проведения дополнительных испытаний "Кадуцей" смог бы стать обычным советчиком докторов, и он, возможно, даже уменьшит стоимость медицинского обслуживания, поскольку врачам придется назначать больным меньшее число анализов, руководствуясь вопросами компьютера. Ведь не секрет, что лечение в США, включая анализы, стоит очень дорого.
Уже существует около 50 таких новоиспеченных "специалистов". Предсказывают, что у них будет многочисленное потомство. В Японии, например, работают над созданием ЭВМ, которая будет автоматически переводить и отпечатывать документы, совершая для этого распознавание живой и письменной речи. Все, чго придется делать пользователю, - это произносить команды. Если машина не поймет, она заговорит, будет задавать вопросы. Она будет делать выводы на основе собственных "суждений". Кроме того, она будет учиться, запоминая свои ошибки.
Возможно, что "экспертные системы" будущего станут давать советы не только инженерам, врачам и химикам, но даже любителям-цветоводам, ухаживающим за прихотливыми комнатными растениями. Они обретут роль обычных, будничных консультантов.
РОБОТЫ
ВОКРУГ НАС
ТАМ, ГДЕ ТРУДНО, ВРЕДНО, ОПАСНО
Ежегодно шахтерами выдается на-гора более 70 миллионов тонн угля, количество, конечно, впечатляющее.
Однако средний прирост добычи из года в год снижается, и есть тому объективные причины. Главная - в том, что добывать уголь из-под земли становится все трудней. Поэтому в постановлении ЦК КПСС и Совета Министров СССР (1981 г.) "О мерах по ускорению технического перевооружения шахт Министерства угольной промышленности СССР" сказано, что надо уделить самое серьезное внимание созданию и внедрению автоматизированных средств добычи угля без постоянного присутствия людей в забоях.
В чем же состоит техническая сторона вопроса?
В 30-е годы шахтерский мир всколыхнул рекорд А. Стаханова. Тогда же появились тысячи его последователей, верно уловивших суть: если раньше забойщик сначала отбивал уголь, а затем сам же укреплял кровлю забоя деревянными стойками, то А. Стаханов рубил и рубил уголь, молотка из рук не выпуская, кровлей же занимались шедшие за ним крепильщики.
Так пришло в шахты разделение труда - первая предпосылка автоматизации.
Вскоре мощные угольные комбайны вытеснили отбойные молотки, а деревянные стойки заменила гидравлическая механизированная крепь. Комбайн ходил вдоль штрека, слой за слоем снимая уголь.
Изобретатели, оценив этот процесс с точки зрения его комплексной автоматизации, отметили главные недостатки. Первый: добыча угля в каждый момент времени сосредоточена около единственной точки пласта, где в него "вгрызается" бешено вращающаяся головка комбайна. И второй: крепежные секции перемещаются независимо друг от друга. Отсюда вывод: чтобы полностью автоматизировать такой процесс, необходимо связать комбайн и крепь в единый комплекс системой датчиков, управляющих и исполнительных узлов.
И вот появился первый проект робота-шахтера. Его двенадцать резцов движутся по забою, снимая уголь уже по всей кромке пласта. Непрерывную подачу агрегата в забой осуществляют части секций крепи, которые в данный момент подпирают кровлю. Оставшиеся ни во что не упираются, а подтягиваются вслед за комбайном.
Догнав его, крепи занимают рабочее положение и теперь сами толкают систему. Затем наступает черед шагать другим опорам, домкраты которых раньше были основным держателем. И так далее. Получается, что крепь движется в забое, как червяк в грунте, непрерывно продвигаясь вперед.
Таким агрегатом, высвободившим труд многих горняков, управляет всего один человек, да и тот переместился в штрек, куда вынесен пульт управления.
Это в общих чертах идея робота-шахтера. Однако прежде, чем она стала реальностью, предстояло рассчитать ее конкретные узлы, "привязать" их параметры к условиям забоя. Ведь пласт имеет сложную, порой весьма искривленную конфигурацию, в которую должен вписаться умный агрегат. Кроме того, ему необходимо двигаться в пласте с заданной скоростью по определённой траектории.
Но вот появились и первые успехи: "Мировой рекорд добычи из крутых пластов! С помощью робота-шахтера АК-3 выдано на-гора 2595 тонн в сутки".
Агрегат зарекомендовал себя отлично. Он может заменить работу восьми участков шахты численностью 450 человек.
Его изобретатель А. Долинский стал победителем Всесоюзного конкурса Минуглепрома СССР, создав лучший проект безлюдной выемки. Появился приказ о серийном изготовлении АК-3 на Киселевском машиностроительном заводе. В 1980 году право на изготовление агрегата приобрела одна из западногерманских фирм.
Агрегат А. Долинского - первое поколение роботизации подземных работ. Пока еще при АК-3 должен, правда, в штреке находиться человек. Но конструктивные особенности агрегата таковы, что он близок к тому, чтобы стать истинным роботом. Прежде всего ему необходимо очувствление для определения границы "порода - уголь". Здесь самым перспективным считается изотопный метод, позволяющий вести анализ границы с помощью радиоактивного излучения.
Очувствление роботу-шахтеру необходимо еще и потому, что обстановка в забое меняется практически каждую минуту: может измениться угол наклона пласта, прорваться вода или обрушиться свод. Чтобы робот мог ориентироваться в любой ситуации, следить за тонкостями процесса, ему нужен телеглаз. Но электроаппаратура, в том числе и телевизионная в традиционном исполнении, для шахт неприемлема: она взрывоопасна.
Здесь вполне подойдут гибкие световоды. Обрабатывать информацию от датчиков и управлять всем процессом работы станет микро-ЭВМ, вынесенная из опасной зоны в штрек. А свяжут компьютер с агрегатом те же световоды.
Разработка всех этих средств управления намечена программой Минуглепрома СССР по созданию и внедрению автоматических манипуляторов (промышленных роботов). Естественно, агрегат А. Долинского только часть этой обширной программы. В ней также предусмотрено освоение в 1990 году серийного производства многих видов добычного и проходческого оборудования с автоматическим управлением. Кроме того, будут выпущены манипуляторы и для вспомогательных операций: транспортировки, погрузки и разгрузки угля.
И наконец, две шахты к 1990 году станут шахтами будущего: управление здесь полностью передадут автоматике.
Существуют и другие роботы-шахтеры, добывающие, например, руду. Но здесь есть масса специфических проблем. Уголь - порода сравнительно мягкая. Комбайн рубит его непрерывно. В рудниках же основным добывающим "инструментом" пока является взрыв. Без него, увы, не обойтись. Технологическая схема добычи давно устоялась, хотя отрицательных моментов хватает.
Скажем, на проветривание штрека после взрыва уходит не меньше смены. В это время все замирает, ведь работать в пыли людям невозможно. Раньше все происходило так: рабочий нес на плече перфоратор - сверлильное устройство, напоминающее отбойный молоток; высверливал в стене штрека несколько отверстий. Следом приходил взрывник, закладывал в отверстия взрывчатку, подсоединял проводку, уходил в безопасное место. Взрыв! Густое облако пыли заволакивало все вокруг. Когда штрек проветривался, приезжал экскаватор и грузил отколотую взрывом породу.
Первая волна механизации и автоматизации началась лет пятнадцать назад. Перфоратор стал самоходным, повышенной мощности, а значит, и производительности. Рабочий толкал впереди себя тележку, жало перфоратора вгрызалось в породу. Все-таки это лучше, чем таскать железную махину на плечах и держать на весу при сверлении. Появились скреперные лебедки, диспетчерские системы связи и многое другое.
Но вот появился и робот-рудокоп, уже не просто перфоратор, а целая система, которая автоматически "прицеливается" в стену штрека, предварительно датчиками нащупав его верхнюю кромку. Разводит буры на нужные расстояния друг от друга. Процесс бурения контролирует мини-компьютер "Электроника-60". Он реагирует на крепость породы, ведь она часто меняется по мере углубления бура, регулирует число оборотов, усилие подачи бура, дает команды на переход от вращательного к ударно-вращательному способу сверления.
Программой предусмотрены специальные меры против заклинивания и поломки бура. Производительность повышается в три-четыре раза, условия труда, естественно, улучшены, человеку остаются лишь функции наблюдателя.
Рабочий макет такого робота создан и испытан. Это первый представитель первого поколения шахтных роботов-рудокопов. Он наделен гибкой программой, действует в забое сообразно обстановке. Человеку остается контролировать его труд на расстоянии, ремонтировать и, наконец, совершенствовать.
Сейчас этот робот проходит полупромышленные испытания, после чего будут изготовлены промышленные образцы. Организаторы проекта с самого начала расчленили технологическую цепочку на отдельные звенья.
Каждое звено разрабатывается самостоятельно. Для бурения - свой робот, для погрузки руды - свой, для учета и контроля рудодобычи - свой. Целая бригада роботов. Они должны зарекомендовать себя на деле.
После очередного взрыва требуется погрузить и вывезти куски отломанной породы. Наибольшая опасность подстерегает человека в забое именно в этот период.
Задача: с помощью робота полностью автоматизировать погрузку и вывозку руды. Разработчики уже демонстрируют лабораторный макет такого робота второго поколения. Это колесная тележка с ковшом, снабженная телекамерой. Граница груды камней на экране отображается сплошной линией. Она дает иной отсвет, чем окружающие пол и стены. Информация обрабатывается бортовым компьютером. Определяется расположение взорванной массы в забое, ее конфигурация. Тележка сама подъезжает к камням и начинает погрузку в бункер. Загрузившись, уезжает из забоя. Вместо телекамеры разработчики попробовали установить инфраприемник, выяснилось, что температура взорванной массы выше пола и стен штрека, значит, стоит попробовать ориентироваться по тепловому излучению. Выигрыш несомненный, телекамера, как и человек, не видит в пыли, которая поднимается после взрыва. Приходится ждать. А инфраглазу эта пыль не помеха.
У шахтного робота давно не стало противников.
А у директора института Ш. Болгожина новые заботы.
Найден полигон - давняя мечта директора. До сих пор все испытания проводили в действующей шахте. У шахтеров план, а тут ученые со своими поделками мешают.
Теперь будет иначе. В сотне километров от Алма-Аты, возле Копчегайской плотины, ученым дали несколько гектаров каменистой местности. Испытания и доводки роботов будут проводиться там. Только потом готовый робот придет в шахту.
Добыча полезных ископаемых ведется не только под землей, но и под водой, их запасы там огромны и нетронуты. Вот характерный пример: по прогнозам геологов, под дном океана между побережьем Южной Африки и Бразилии находится алмазная жила, превосходящая все мировые запасы во много тысяч раз.
Мировой океан. Он занимает большую часть нашей планеты, так что с чисто формальной точки зрения ее нужно было бы назвать не Земля, а Вода. Человек уже давно вступил в сношения с этой частью своего космического дома, черпая из нее прежде всего пищу и другие продукты обихода. Сравнительно недавно добыча полезных ископаемых сначала робко, а затем все более уверенно переместилась в океан. Вспомним целый город Нефтяные Камни, отвоевавший у Каспия не одну тысячу квадратных метров.
Хронологически непромышленная подводная роботология даже опережает промышленную. Взять хотя бы первые манипуляторы, предназначенные для подводных работ на глубине, где пребывание человека обходится во много раз дороже, чем любая хитроумная автоматизация. Сейчас потомки этих роботов-первопроходцев активно осваивают "голубой космос".
Робот для подводной добычи нефти с глубин до 600 метров испытан французской компанией "Эльф-Аквитэн". Хотя основные машины и агрегаты при разработке нефти в море находятся над водой, на платформе для бурения, и под водой хватает работы. Между тем водолазы с трудом справляются со сложными монтажными и ремонтными работами на глубинах более трехсот метров. Заменить их и должен робот, который будет действовать на месторождении нефти у берегов Габона. Масса робота, который получил название ТИМ, 12 тонн, он снабжен двумя руками с усилием по сто килограммов и подъемной стрелой с грузоподъемностью полторы тонны.
В США сконструирован робот-водолаз, очищающий днища судов. Повинуясь программе, робот, снабженный воздушными двигателями и магнитными гусеницами, ползает по днищу судна и скребет его вращающейся щеткой. Экономия явная. Не нужно ставить судно в док, не потребуется бригада водолазов.
Сейчас более двадцати разновидностей роботов-подводников ведут научные исследования дна морей и океанов.
Из недр космоса "голубого" роботы "нырнули" в космос межпланетный, ведь условия там поистине космические: космический холод, космический вакуум, космическое излучение.
Есть ли жизнь на других планетах? Одиноки ли мы во вселенной? Ответ на эти вопросы предстоит впервые получить не человеку, а роботу. Великая честь представлять нашу планету на космической встрече "в верхах" принадлежит потомкам автоматических промышленных манипуляторов космическим киберам. Жители других планет впервые увидят роботов как наших полномочных посланников. И по их образу и подобию будут судить о нас. Представляете, какая ответственность!
Самым ярким примером прорыва робототехники в космические сферы является выдающаяся победа в освоении межпланетного пространства советскими станциями "Венера-13" и "Венера-14". Эти межпланетные роботы проникли туда, куда прежде проникало лишь воображение человека. И это не прогнозы и не фантастика, а впечатляющая реальность сегодняшнего дня.
Путь "Венеры-13" был долгим и сложным - дорогу длиной в триста с лишним миллионов километров станция преодолела за четыре земных месяца, дважды по командам с Земли корректировалась ее орбита, чтобы обеспечить встречу станции с планетой.
Задача осложнялась тем, что спускаемый аппарат решено было посадить именно на освещенной стороне планеты, так, чтобы высота Солнца над местным горизонтом была не меньше 70-80 градусов. Этим обеспечивались наилучшие условия для телефотометра - "глаза" спускаемого аппарата. Но при соблюдении таких жестких условий посадки наземные пункты не могли вести прямое управление полетом спускаемого аппарата. Надежда была на автоматику, и она "нашла выход из положения" - за двое суток до подлета к планете спускаемый аппарат автоматически отделился от орбитального отсека и продолжал двигаться по траектории, которая привела его прямо в атмосферу Венеры в заданном районе. Орбитальный же отсек был автоматически переведен на такую орбиту, что, пролетая мимо планеты, он одновременно "видел" и Землю, и спускаемый аппарат, выполняя роль ретранслятора-"связника" между ними.
Раскаленный шар спускаемого аппарата, приближаясь к поверхности Венеры, постепенно усмиряет свой бег. Вот сброшена сферическая теплозащитная оболочка, посадочный аппарат повисает на парашюте, вот сброшен и он... На экранах Центра управления полетом вспыхивают первые результаты измерений: температура, давление, высота... И вот в зале раздаются дружные аплодисменты - на экране появляются уже чем-то знакомые, но все-таки новые камни Венеры.
Не скоро еще человек сам полетит на Венеру - очень уж негостеприимна эта небесная красавица. Но он поставил себе на службу верных помощников в освоении вселенной - автоматических космических роботов.
И сейчас ученые ждут от посланцев Земли новых успех~"в. Вращаются вокруг Венеры новые роботы - "Венера-15" и "Венера-16". Счастливой работы вам, космические коллеги.
Да, слово "Земля" недаром вызывает у нас, современников космической эры, ассоциации с голубым шаР"ком, так прекрасно выглядящим из космоса. Однако эта ассоциация свойственна лишь последним десятилетиям, до начала космической эры "Земля" означала всего лишь землю, то есть почву и грунт, поле, пашню и ниву. Роботология наших дней, несмотря на всю "занятость" высокими проблемами космоса, нет-нет да и посмотрит "себе под ноги" на землю.
Вот несколько фактов. На Украине уже прошел испытания автоматический свеклоуборочный комбайн.
Агрегат уверенно двигается вдоль грядок, хотя его ведет не человек, а робот - специальная следящая система. Аналогичная машина создана для уборки хлопчатника. Уже работают полностью автоматизированные теплицы и системы орошения, включающие климатроны - установки искусственного климата в зависимости от погодных условий.
Появился и робот-колхозник, хотя телосложением он совершенно непохож на человека и с виду кажется неказистым и неуклюжим, но впечатление это обманчиво.
В отделе робототехники Московского института инженеров сельскохозяйственного производства по инициативе члена-корреспондента ВАСХНИЛ, заместителя министра сельского хозяйства СССР Б. Рунова для него выбрали профессию животновода. А чтобы ею овладеть, нужны мобильному автономному роботу немалая сноровка и ловкость.
Именно на эти качества первенца животноводческой робототехники особенно обращал внимание начальник отдела В. Васянин. Трудно представить, как, например, станет какой-то металлический шкаф ухаживать за живой коровой. Все-таки ферма не цех, где роботу достаточно выполнять заданный набор механических движений. Тут будут рядом с ним беспокойные животные со своим нравом, привычками, капризами. Чтобы к ним приноровиться, нужна еще и элементарная сообразительность, а у созданного первенца-робота даже головы нет. На месте ее в верхней части "шкафа" поблескивают линзы телеобъективов.
Переключены клавиши на пульте управления - робот оживает. Сигнал "действовать" он получает от мини-компьютера, скрытого в его механическом корпусе.
Вот он бойко покатился по комнате. Хоть всех присутствующих при демонстрации и предупредили, что он никогда не заденет живое существо, человек невольно отступает в сторону, когда мимо проезжает металлический корпус 185-сантиметрового роста. Робот быстро и аккуратно объехал столы, стулья. Целенаправленно устремился в угол комнаты, где стояло ведро. Резиновые пальцы подцепили ведро за край, другая рука опустилась на дно, к тряпке. Взаправду должен бы он вымыть стены каустиком - ведь именно им дезинфицируют фермы. Пока же обходится он обычной водой. Похожие на щупальца руки плавно, быстро, круговыми движениями моют стены. Скованности в действиях машины не чувствуется. У каждой руки восемь степеней свободы. А проще - поворачиваются и сгибаются в любую сторону. Двигается вокруг своей оси и верхняя часть "тела".
Такая мобильность позволяет роботу выполнять все обязанности скотника. Он умеет накормить животное, проверить, все ли животные здоровы, может следить за температурой и влажностью воздуха на ферме, взвешивать, маркировать свиней или коров, переводить их в другое помещение.
Чтобы робот смог это сделать, для него пришлось разработать подсистемы распознавания образов, множество сенсорных органов, гибкую память и многое другое. Кстати, конструкторы применили впервые для памяти видеомагнитофонную ленту, благодаря чему робот научился сличать образы разных животных и даже одних и тех же, но в разные периоды роста.
Конструкторам пришлось немало сил отдать сельскохозяйственной подготовке, изучить нрав животных, их физиологию и биомеханику. Они с секундомером следили за скоростью передвижения свиньи и коровы, узнавали, как далеко они могут отставлять ногу вперед и в сторону, определяли, с какой силой нужно брать в руки поросенка или теленка, чтобы не повредить ему.
Но вот он появился на свет. И начались новые проблемы: оказалось, все предусмотреть заранее просто невозможно. В первый же "выход в свет" на объектив телекамеры - глаз робота - села муха, и он ослеп.
Пришлось делать устройство, имитирующее действие человеческого века.
Когда робота впервые ввели в загон к свиньям, они отъели у него резиновые части кистей рук. Видимо, животных чем-то привлек их запах. Значит, следовало придумать что-то, что заменило бы роботу железы, выделяющие защитный аромат.
А как должен вести себя робот в конфликтной ситуации, например, когда дерутся быки?
"Что вы делаете в это время?" - спрашивали инженеры у опытных животноводов.
"Убегаем", - полушутя отвечали те.
Робот не должен знать страха. И его создатели стали искать аналог поведения человека в сходной ситуации. Кто-то вспомнил, как в деревне задир-собак разливают холодной водой. Роботу вручили в руки брандспойт. Ледяная струя успокоит разгоряченных животных.
Разработаны принципы построения роботов и робототехнических комплексов для разных отраслей сельского хозяйства: растениеводства, хлопководства, овощеводства в закрытом и открытом грунте и других. Есть проекты роботов для технического обслуживания и малого ремонта автотракторной техники, например проект робота-заправщика. Двадцать четыре модификации спроектированной в отделе техники позволили бы заменить весь парк машин и механизмов, который сейчас занят в сельском хозяйстве страны.
Однако, чтобы робот-животновод стал реальностью, необходимо не только изготовителям, но и потребителям быть заинтересованными в его внедрении. Готовы ли колхозы дать такому роботу посильную работу? Где его следует применить в первую очередь?
Вот что думает по этому поводу председатель одного из передовых в Волынской области колхоза "Имени XXVI съезда КПСС" Е. Вощук. "Внедряя роботов, следует прежде всего думать о людях. В сельскохозяйственном производстве еще много не только тяжелой, но и вредной и даже опасной работы. Это - уборка навоза, работа с химическими удобрениями и гербицидами.
Вот куда бы в первую очередь направить такую технику. Примем ее с распростертыми объятиями".
Ведутся разработки сельскохозяйственных роботов и компьютеризованных киберов и за рубежом.
Одна английская фирма начала производить пугалароботы. Они не только непрерывно издают различные пронзительные звуки, но и излучают ночью разноцветный свет. Однако самое главное их достоинство в том, что они умеют ходить - перемещаются по полю или огороду согласно определенному маршруту. Будем надеяться, что такая борьба с пернатыми вредителями эффективнее, чем традиционные пугала, к которым птицы быстро привыкают и перестают их бояться.
Австралийские инженеры заняты в настоящее время проблемой создания автоматических устройств - роботов для стрижки овец. Управление роботами производится ЭВМ. Уже созданы первые приспособления этого типа.
Специалисты стремятся выявить наиболее эффективные положения овцы по отношению к роботу-стригалю, способствующие сокращению времени стрижки до минимума. Пока скорость стрижки овец с помощью автоматов не превышает тридцати сантиметров в секунду, но ученые надеются довести эту скорость до одного метра в секунду, что позволит состригать девятнадцать килограммов шерсти в минуту. При такой скорости робот должен "видеть", что находится на пути движения его режущего инструмента. Поэтому инженеры Аделаидского университета сейчас исследуют методы ультразвукового обнаружения сосков и рогов животного, прежде чем к ним приблизится рабочий инструмент. Необходимо также создание системы точных датчиков для предотвращения порезов овец, которая обеспечила бы перемещение инструмента на расстоянии нескольких миллиметров над поверхностью кожи.
Одна австралийская фирма создает сейчас экспериментальную модель робота-стригаля на основе известного автоматического манипулятора ПУМА. Иммобилизацию овец, то есть сохранение их неподвижного состояния во время стрижки, специалисты этой фирмы предлагают производить электрическим током. Однако при этом требуется специальное оборудование для постоянного контроля за состоянием животных, так как применяемый для этой цели пульсирующий ток может вызвать остановку дыхания.
РОБОТЫ У НАС ДОМА
Робот промышленный и робот непромышленный призваны заменить человека там, где ему трудно, вредно, опасно. Тогда какое отношение имеют роботы к нашему дому? Разве дома вредно? Разве опасно? Разве трудно? Мы возвращаемся домой после работы, приходим туда отдохнуть, заняться любимым делом, пообщаться со своими близкими. Зачем нам тут робот? Рассуждающий так никогда, вероятно, не сталкивался с домашним хозяйством, скорее всего это мужчина или юноша, живущий по весьма удобному принципу разделения труда. Мужские занятия - привык думать он - ходить на работу (на охоту, за добычей), женские - сидеть дома (хранить домашний уют, поддерживать огонь в очаге).
Однако стоит вспомнить, что большинство современных женщин тоже работают, как эти "вековые" аргументы рассыпаются как карточный домик. Чисто женские занятия - это и "ходить на работу", и "поддерживать огонь в очаге", и "воспитывать детей", и, самое важное, "оставаться женщиной" привлекательной и нежной.
Заглянем в глубь домашней технологии. Сейчас в быту используется масса всевозможных приборов, упрощающих домашний труд: стиральная машина (полуавтомат или автомат), электромясорубка или кухонный комбайн, соковыжималка, кофемолка, кофеварка, картофелечистка, хлеборезка, тостер, печь "Электроника", холодильник, электрокамин, пылесос, посудомоечная машина и многое другое. Облегчают ли эти устройства труд женщины? Безусловно, облегчают! Легко ли сейчас женщине в домашнем хозяйстве? Нет! Может быть, даже еще труднее.
Ситуация у нас дома в некотором смысле моделирует ситуацию в промышленности. Действительно, имеются довольно совершенные автоматы, кухонные комбайны (своеобразные обрабатывающие центры), но загружать и выгружать, ставить, вынимать и вставлять, расставлять и развешивать должна женщина.
Если теперь ответ на вопрос, зачем нужен домашний робот, еще не созрел в мозгу читателя, то мы напрасно вели наш рассказ о поколениях роботов.
Президент компании "Юнимейшн", ведущей производство промышленных роботов, Дж. Энгельбергер обещает, что уже в 1985 году специалисты его фирмы выпустят на рынок робота-слугу. Его уже окрестили Айзеком в честь А. Азимова, писателя - фантаста и популяризатора науки. Что будет делать этот робот?
Например, повинуясь устным командам, подойдет к буфетной стойке, возьмет своими длинными механическими пальцами кофейник и поставит его на плиту.
Достанет с полки и поставит на стол тонкую фарфоровую посуду, поставит молоко и сахар, после чего, заварив кофе, голосом или специальным музыкальным сигналом возвестит о начале ужина. Это, конечно, будет впечатляющее зрелище, и ваши гости будут иметь тему для разговора за едой. Такой робот-слуга будет способен не только накрыть на стол и убрать с него, но и помыть посуду, приготовить постель, открыть окно, произвести в квартире уборку (от стирания пыли до чистки ванны и раковины), может стирать, сушить, гладить белье, чистить овощи.
А вот и воплощенные замыслы. На фотографии, помещенной в колумбийском журнале "Кромос", робот "Эро" выгуливает собаку. Внешне этот робот выглядит как невысокий пуфик на маленьких колесиках, сбоку которого манипулирует небольшая, около полуметра, рука. Собака, по-видимому, совершенно безразлична к своему кибернетическому "двойнику", который крепко держит поводок в руке. Еще этот небольшой помощник может убирать постель, вызывать полицию, накрывать на стол, мыть стены, содержать в порядке библиотеку.
Причем память робота настолько совершенна, что он выполняет все это с безукоризненной точностью. Программа всех необходимых операций и детальный план комнат закладывается в компьютер, установленный в- корпусе робота.
Выпущенный в США домашний робот "Комро-1" - еще один довод в пользу того, что мечты фантастов начинают сбываться. Он может открывать и закрывать двери, подавать гостям напитки, выносить мусор, прогуливать собаку, развлекать своих хозяев радио- и телевизионными программами.
Конструкторы утверждают, что, хотя многим новое изделие кажется игрушкой, на самом деле оно открывает новый этап на пути полной автоматизации домашнего хозяйства. Единственная рука механического слуги обладает несколькими степенями свободы и легко манипулирует даже мелкими предметами. На случай непредвиденного столкновения с мебелью и стенами имеется специальная система защиты. Управляется робот дистанционно, а при надобности программируется.
Но, как бы то ни было, факт остается фактом: первый серийно выпускаемый робот стучится в дверь в прямом и переносном смысле.
Нельзя не отметить, что собратья этих механических домработников уже освоили несколько чисто человеческих профессий. Японские инженеры, например, сконструировали робота для изготовления национального японского блюда "суси" - специально обработанных рисовых колобков с кусочком рыбы, осьминога, морскими водорослями. Ресторан-робот открылся жв японском городе Мацудо, чьи повара славятся искусством приготовления традиционного "суси". Посетителям предлагают отметить электронным "карандашом" название понравившегося блюда на экране специального телевизора, вделаннного в столик. Через некоторое время манипуляторы механического официанта ставят перед клиентом заказанное "суси". Одновременно на экране появляется его цена. Все операции в таком ресторане контролирует мини-ЭВМ.
Издавна музыканты, играющие в оркестре, сталкиваются, казалось бы, с простой, но трудноразрешимой проблемой: как переворачивать страницы нот, не прекращая игры. Своеобразное решение этой каверзной проблемы на самом современном уровне предложила группа швейцарских изобретателей. Они создали для этой цели маленький робот, который выполняет роль третьей руки музыканта и по его приказу переворачивает страницу - необходимо лишь нажать ногой педаль.
Японская фирма "Токио кэки" сконструировала робот, играющий на пианино. В отличие от магнитофонной звукозаписи робот-пианист создает музыкальный эффект присутствия играющего мастера. Достигается это с помощью мини-ЭВМ, которая управляет электрогидравлической приводной системой робота, воздействующей на клавиши и педали пианино.
Впрочем, совсем не обязательно роботу нажимать клавиши, можно сделать это изнутри, "из пианино".
"Самые лучшие пианисты мира готовы прийти к вам домой и играть только для вас! После 15-летних экспериментов нам удалось преобразовать механическое пианино, изобретенное в 1904 году, в электронное!" Так разрекламировала свои поиски фирма "Марантц" (ФРГ).
Механическое пианино сейчас можно увидеть, пожалуй, только в музее. Управлялось оно с помощью бумажной перфоленты. Каждое отверстие служило приказом для нажатия той или иной клавиши. Хотя исполнение было несколько жестковатым и ему порой недоставало эмоциональной окраски и душевности, тем не менее механические пианино пользовались большой популярностью - до 1903 года их было выпущено пять миллионов.
Фирма "Марантц" утверждает, что ее электронное устройство можно поставить на пианино любого типа, причем это не помешает обычной ручной игре. В чем же суть новшества? Кассета с магнитной записью исполнения какого-либо произведения музыкантом устанавливается в воспроизводящий аппарат, внешне напоминающий обычный магнитофон. Благодаря тому что сама запись (в цифровом виде) делалась на подобном инструменте, она содержит подробные данные о всех параметрах игры - скорости, силе удара, отрезках времени вплоть до тысячных долей секунды, работе педалей и так далее. Компактная вычислительная система переводит эту информацию в сигналы для точно действующих реле, связанных с механизмом инструмента, и они в нужное время нажимают на нужную клавишу. Несколько выдающихся музыкантов уже подтвердили, что компьютерная репродукция неотличима от реального "живого" исполнения.
Уже выпущено в продажу свыше десяти тысяч кассет всех музыкальных жанров, начиная от концертов знаменитых пианистов и кончая легкой музыкой "под настроение". Особенно широкие возможности открываются перед "электронным" пианино в музыкальных и театральных школах и балетных студиях.
Японские инженеры фирмы "Ямаха Ко" пошли дальше. Они сконструировали робот в помощь композиторам. Это автоматический нотописец. Он фиксирует на нотной бумаге все, что проиграл музыкант на инструменте. Микрокомпьютер преобразует звуки инструмента в электроимпульсы, подаваемые на специальную пишущую машинку, которая печатает нужный ключ, тактовые черточки, диезы, бемоли, указывает ритм и запечатлевает аккорды и мелодии. Автоматика позволяет переходить на запись с различных инструментов, от пианино до гитары и виолончели.
Раз уж роботы освоили сферу искусства музыки, то почему бы им не попробовать себя и в изобразительном искусстве?
Известно, что существуют роботы, "умеющие" рисовать. В Англии, пишет газета "Санди тайме", сейчас идет подготовка программ для кибернетического роботаскульптора, работающего по мрамору.
Американские инженеры сконструировали робота, который по снимкам "вылепливает" скульптуры. Лицо человека фотографируют восемь аппаратов, затем его "объемное" изображение переводится в сигналы, по которым машина делает скульптурный портрет - сначала из мягкого, потом из твердого материала.
Эти роботы-творцы перешагнули уже известную грань между первым и вторым поколением. Их интеллект и чувствительный аппарат достигли высокого совершенства. Еще более интеллектуален домашний робот-шахматист. Он не только легко обыгрывает среднего шахматиста-любителя, но и сам передвигает фигуры на доске миниатюрной механической рукой - манипулятором.
Какие только функции не выполняет сегодня многочисленная команда бытовых роботов! Но вот эта конструкция фирмы "Дайнити Кико" (Япония), пожалуй, одна из самых необычных. Дело в том, что новое устройство призвано восполнить дефицит... больничных сиделок. Сегодня мало кто соглашается за небольшую плату ухаживать за лежачими больными. "Железная нянька" умеет распознавать приказания, отданные голосом, подает воду и точно по расписанию - лекарства Управление роботом осуществляется с помощью ЭВМ. Пока еще цена его великовата - опытный экземпляр обошелся в девятнадцать тысяч долларов, - но фирма надеется, что в будущем затраты на производство таких механизмов удастся свести к минимуму.
В Бостонской больнице робот ведет прием больных, выясняет их недуги и составляет подробную историю болезни, более подробную и систематизированную, чем это делают врачи, обычно сокращающие записи из-за недостатка времени.
В штате пожарного департамента города Иокогама в Японии числится робот, который может самостоятельно передвигаться в пламени и ядовитом дыму и, орудуя руками-захватами, тушить огонь. В случае пожара он устремляется в самые опасные места и, не щадя себя, борется с огнем.
В западногерманской полиции "служит" робот. Он умеет подниматься на гусеничном ходу по лестнице, отпирать двери, вскрывать упаковки. Благодаря дистанционному управлению, телекамере и "водяному ружью" успешно обезвреживает установленные взрывные устройства.
225-килограммовый курьер-робот питается от батарей и бесшумно катит на резиновых колесах по коридорам громадного здания почтамта вдоль проложенных под линолеумом пола проводов низкочастотного излучения. Робот останавливается по световому сигналу ила же в заданном месте, получая и сдавая корреспонденцию. Если на его пути встречается препятствие, он ждет, потом сигналит и начинает двигаться только после того, как освободится дорога.
У бытовых роботов блестящие перспективы. Весьма перспективно их использование в плане автоматизации и механизации сферы торговли: можно предполагать применение роботов для доставки товаров, а также доставки на рабочие места горячего чая, питьевой воды и т. д.
В отелях целесообразно использование роботов в качестве барменов, кельнеров, посыльных и другого обслуживающего персонала. Перспективно также обслуживание в парках и других местах массового отдыха.
Возможно использование роботов по проверке билетов, по уборке территории, при размене денег и т. д. и т. п.
Каждый из нас, просматривая периодическую прессу, сможет пополнить коллекцию таких, пока еще курьезных, сообщений. Вот один из таких курьезов: роботконь. Наездник, как обычно, седлает коня, но, вместо того чтобы пришпорить его, нажимает кнопки. Копь легко "встряхивается" и пускается по дорожке ипподрома. Речь идет о тренажере, созданном группой японских инженеров. Они сконструировали электрическую лошадь, которая способна развивать скорость до 20 километров в час. Управляется робот с помощью кнопок, вмонтированных в его "шею". Нажимая их, спортсмен может моделировать самые сложные ситуации, которые могут произойти, если он оседлает уже настоящего коня.
РОБОТ: ЧИТАЮ И МОГУ ИЗЪЯСНЯТЬСЯ
Постоянно "общаясь" с человеком, робот вынужден научиться понимать человеческий язык, реагировать на команды, задаваемые не только нажатием кнопок, но и команды, отдаваемые голосом. Это куда более "привычное" для человека средство общения и верный путь для расширения популярности роботов. Однако проблема "взаимопонимания" человека и машины куда сложнее, чем трудности общения даже двух людей, говорящих на разных языках. История сохранила немало курьезов подобного "понимания". Так, английский капитан Дж. Кук, вторично "открывший" Австралию, писал в своем дневнике о "странном существе, которое скачет на задних лапах, как прыгающая мышь". Когда Дж. Кук справлялся о нем у местных жителей, туземцы отвечали одним словом "кенгуру". Современные языковеды установили, что на языке туземцев "кенгуру" означает всего лишь "я тебя не понимаю"! А ведь язык человека и язык компьютера разнятся буквально как "лед и пламень".
Надо сказать, что человеческий язык уже давно "волновал" умы машин. Приборы, читающие печатный текст и являющиеся, как правило, частями других, более сложных устройств, уже перестали быть технической новинкой. Достаточно вспомнить почтовые автоматы, сортирующие корреспонденцию в зависимости от шестизначного почтового индекса. Однако такие примитивные устройства способны "понимать" лишь сильно стилизованный текст, написанный по заданному трафарету. А как же простой печатный шрифт? Неужели нужно специально переписывать для робота миллионы человеческих книг?
Вот последнее достижение в этой области - читающий компьютер третьего поколения. Он "умнее" своих предшественников - читает тексты, отпечатанные шрифтами двадцати пяти различных видов. "Тренировочная фаза" в течение 15-20 минут позволяет прибору переходить на другой вид шрифта. Машина работает по принципу "оптического ощупывания" со скоростью 20-30 печатных знаков в секунду. Существуют и разработки, нацеленные на распознавание рукописного текста.
Однако проблема восприятия информации "с голоса" гораздо сложнее. Печатный текст формируется из четких знаков - букв, живая речь из атомов речи - звуков или, как их называют специалисты, - фонем (отсюда "фонетика" - наука о правильном произношении). Как объект физического анализа каждый звук речи отличается от другого и частотой, и продолжительностью, и интенсивностью. Кроме того, в речи нет четких границ между звуками, как между буквами в тексте, и это сильно затрудняет распознавание по сравнению с любым печатным текстом. Одни специалисты пытаются распознавать речь по частотным характеристикам, присущим звучанию каждой буквы (заметим, что в некоторых буквах несколько фонем). Другие - по группе фонем, составляющих слог, так как распознавание многих фонем вне контекста очень трудно.
Для того чтобы понять, сколь сложна проблема звукового распознавания человеческой речи, уместно привести такой почти анекдотический пример. В одном научно-исследовательском институте, расположенном на Кавказе, была построена кибернетическая черепаха, которая выполняла фиксированный набор команд, подаваемых голосом. На торжественную демонстрацию съехались гости. Черепаха была послушна своим создателям, но "принципиально" отказалась слушаться гостей. Как выяснилось в результате пристрастного разбирательства, гостям она не повиновалась по одной простой причине... команды нужно было произносить с "кавказским акцентом". То, что мы называем кавказским акцентом, всего лишь связано с повышенным участием в произношении некоторых звуков гортани.
Проблема машинного слуха настолько сложна, что не имеет имитационных аналогов механического моделирования в глубинах истории. Анналы техники не сохранили нам достоверных сведений о слушающих андроидах. То ли слуховой аппарат человека оказался слишком замысловатым для чисто механического подражания, то ли роль мозга оказалась слишком велика в слуховом процессе, по крайней мере, проблема машинного слуха так же, как и зрения, стала актуальной лишь на электронном уровне. К сожалению, известный нам микрофон еще меньше напоминает человеческое ухо, чем телекамера человеческий глаз.
Имевшиеся в распоряжении ученых ЭВМ поначалу с трудом справлялись с предлагаемым им объемом "распознавательных" работ. Они реагировали далеко не на каждый голос, а лишь на тот, на который они настроены заранее. К тому же у них был ограниченный словарный запас.
Загвоздка состоит в следующем: число возможных вариантов спектра фонем, учитывая словарное богатство каждого языка, выражается астрономической величиной, и это не считая того, что спектры даже одинаковых слов разнятся в зависимости от индивидуума, их произносящего. Более того, даже один и тот же человек в течение одной недели, даже нескольких часов будет произносить одни и те же слова совершенно по-разному.
Первые акустические системы безошибочно распознавали лишь отдельно сказанные буквы алфавита, следующие - отдельные слова команд, четко произнесенные в микрофон. Однако понимающий робот "слушался" лишь голоса своего "хозяина" и делал это очень хорошо. Во время работы он самостоятельно приспосабливался к "постоянно меняющейся языковой манере человека". Другим людям, которые вступали в контакт с роботом и произносили в микрофон буквы или цифры, удавалось его "обмануть". Но это бывало лишь тогда, когда голос говорящего напоминал голос "хозяина". Конечно, "привыкание" машины к другим голосам не связано с какими-то непреодолимыми трудностями, просто компьютер вырабатывает "модель голоса данного индивидуума". Для этого необходимо ввести в память ряд звуковых проб со словами, которые машина должна понимать.
Можно не сомневаться, что в будущем понимающие наш язык аппараты, если мы хотим, чтобы они утвердились в производстве и быту, должны обладать такой степенью приспособляемости, чтобы узнавать голоса любых людей и выполнять любые команды.
В настоящее время уже нашли применение около пятисот систем распознавания речи. Они используются при контроле качества продукции на конвейерах, при управлении станками, сортировке товаров и багажа в аэропортах, с целью включения электроприборов, вызова врача или медсестры, в системах программированного обучения, опознавания личности и т. д. и т. п.
Имеются практические примеры применения понимающих речь роботов и в непромышленной сфере.
Системы, распознающие печатный текст, уже не новость. Но вот эта особенная. Сконструированы роботы, которые работают в паре - один переворачивает страницы текста, а другой... читает слова приятным женским голосом. Точность распознавания 99,5 процента. Эти роботы могут излагать последние известия по радио и отвечать на вопросы по телефону. Конструкторы создали механического чтеца вовсе не для рекламы, ему уже уготовано рабочее место - он будет служить в автоматизированной телефонной справочной службе.
Конечно, можно и специально ввести в компьютер всю необходимую справочную информацию; но зачем делать еще раз то, что уже однажды сделано, ведь телефонные книги и справочники уже отпечатаны, они и в будущем будут переиздаваться и корректироваться, ими будут пользоваться люди... а теперь еще и роботы.
Да! Общение с человеком пошло роботу на пользу, он получил еще одну чисто человеческую привилегию - заговорил. Таким образом, к привычным механическим эффекторам робота добавилось еще одно немаловажное устройство - синтезатор речи.
Машина, которая "говорит", не такая уж новинка, к примеру обыкновенный магнитофон. Однако он, к сожалению, "говорит" только то, что записано на пленку, то, что заранее "наговорил" ему человек. С подобной говорящей машиной можно легко "побеседовать", достаточно лишь набрать номер московских "говорящих часов" 100.
А что, если наговорить кучу самых разных слов и поручить компьютеру находить и воспроизводить нужные слова в нужной последовательности в процессе разговора? Получится ли правильная человеческая речь?
Вряд ли. Ведь одно и то же слово участвует в предложениях разного типа с десятком интонаций, сотнями вариантов произношения. Чтобы такая речь мало-мальски "ласкала слух", потребуется слишком большая куча вариантов произнесения слов и, следовательно, слишком длительный поиск нужного варианта. Все это окажется слишком дорого. Хорошо бы, задумались конструкторы, создать машину, которая бы не воспроизводила заранее записанные фрагменты, а говорила сама, то есть синтезировала речь, подобно человеку.
Историю говорящих машин следовало бы начать с глубины веков. Самые первые были тщательными моделями человеческого речевого аппарата. Кузнечный мех вдувал мощную струю воздуха в кожаную гортань, язычки и резонаторы, управляемые набором рычагов, вибрировали, и машина "говорила". Достоверно известна одна из конструкций такого типа, построенная В. фон Кемпелиа в конце XVIII века. Она неплохо имитировала человеческую речь, хотя не совсем правильно произносила некоторые звуки. В 1920 году Р. Пэджет демонстрировал акустическую модель речевого аппарата, которая удивляла слушателей целыми фразами, например: "О Лейла, я люблю вас!" или: "Алло, Лондон, Вы слушаете?" Изобретатель, манипулируя руками, очень искусно изменял форму резонирующей полости механической гортани - и одна фраза менялась на другую.
Как это неоднократно происходило в истории техники, механический принцип копирования благополучно завершил серию тщетных потуг и новая фаворитка человечества - электроника прочно уселась на его место.
Исследованиями было установлено, что подавляющая часть "звуковой энергии" человеческой речи сосредоточена в пяти типовых областях частот: от 200 до 3500 герц. Эта шкала разбивается на пять фонем, каждая из которых генерируется своей специально настроенной звуковой схемой. Управление частотой и амплитудой каждой схемы, а также очередностью их срабатывания поручается компьютеру. В результате определенных последовательностей включения генерирующих схем и возникают необходимые звуки "человеческого голоса".
Однако качество работы машины, полностью синтезирующей речь, в большой степени зависит от того, насколько удачно удается электронная имитация смеси переходных шумов между отдельными звуками, поскольку эти шумы играют определяющую роль для понимания языка вообще и, следовательно, искусственного языка в частности. Еще более усложняет все дело то, что они бывают чрезвычайно разнообразными, зависят от того, в какой последовательности произносятся гласные и согласные, от скорости и громкости произнесения слов и т. д. и т. п.
Еще недавно как великую экзотику демонстрировали кибернетики системы, полностью синтезирующие человеческую речь, а уже поступают сообщения о серийном выпуске говорящих часов, фотокамер и светофоров.
Это следствие появления на рынке близкого родственника современного микропроцессора - который назван voiceprocessor (от английского слова "voice" - голос).
Что-то вроде "процессор для синтеза голоса" или "голосистый процессор". Такое устройство программируется как обычный компьютер и может синтезировать электронную копию волнового спектра, возникающего при произнесении слов. Этим машина похожа на читающего, который, правда, не имеет понятия о смысле прочитанного.
Лингвистические способности роботов не только "оживили" безгласные вещи, но и помогают человеку в его "разговорной деятельности"; например, созданы карманные компьютеры, используемые в качестве помощников при переводе, которые "выговаривают" отдельные слова с правильным произношением на нужном языке; или целые роботы-переводчики, которые могут осуществлять перевод международных разговоров несложного бытового содержания. Такова, например, система перевода английский - японский. Память робота содержит около восьми тысяч фонем слов, четыреста идиом, примерно тысячу грамматических правил обоих языков. Она почти не отличается от аналогичных интеллектуальных переводчиков. Шагом вперед явилось ее объединение с распознавателем и синтезатором речи.
Одна из фирм в ФРГ, занимающаяся выполнением заказов по пересылке, давно использует в своей деятельности компьютер, который отвечает на звонок человеческим голосом, робот подтверждает получение заказа или же сообщает о невозможности его выполнения, закончив разговор, говорит "спасибо" и "до свидания".
Хорошо трудится вот уже почти два года "Карлуша" - крупная железнодорожная справочная система: абонент называет вокзал назначения и без промедления получает устную справку о поездах, следующих в данном направлении, времени и вокзалах, в которых можно сделать удобную пересадку.
Постоянно растущий объем информации требует новых путей и методов ведения информационно-справочной работы. Все острее ощущается нехватка людей, времени и средств для компетентных ответов на вопросы из всех областей знания. В будущем тут могут помочь лишь понимающие язык и могущие "изъясняться" роботы, снабженные "банками памяти".
Серьезные усилия, прилагаемые в области создания машин, понимающих человеческую речь и отвечающих людям, наглядно свидетельствуют о том, что речь при этом идет не о каких-то игрушках. Взаимодействие с машиной на языковом уровне позволит людям, не обладающим специальными знаниями, эффективно пользоваться компьютерами и роботами.
МИДИ, МИНИ, МИКРО...
В одном из номеров журнала "Техника - молодежи" была помещена красочная фотография: симпатичная девушка расположилась на удобном коврике 2X2 метра с пестрым современным рисунком. Подпись под фотографией гласила: "Так выглядит одна из секций большой интегральной схемы, размер которой в натуре составляет 250 микрон в поперечнике". Пестрота этого коврика объясняется тысячами нитей, квадратиков, прямоугольников, каждый из которых представляет собой транзистор, проводок или другой элемент микромодуля. На таком коврике переплетаются около миллиона электронных компонентов. Это в десять раз больше, чем их было в одном из первых компьютеров ЭНИАК - 30-тонном монстре, который начал работать в 1946 году. Несколько последних десятилетий инженеры практически ежегодно, грубо говоря, удваивали число электронных узлов в одном микрокристалле. При этом - примите как парадокс или как закономерность - с ростом плотности "упаковки" микроэлементов снижается их стоимость и размеры. К 1990 году инженеры намерены разместить в одном модуле 10 миллионов транзисторов. В результате столь потрясающей эволюции интегральные схемы стали сверхнадежными. Достаточно сказать, что ЭВМ на радиолампах такой же сложности вряд ли смогла бы проработать до первого отказа даже несколько секунд. Из-за предельной близости элементов схемы друг к другу электрические сигналы пробегают от одного элемента схемы к другому по таким коротким путям, что это почти не требует затрат электроэнергии и происходит за минимально возможное время. Отсюда качественные шедевры быстродействия и объема памяти. Современный микропроцессор реализует что-то около миллиона операций в секунду, а такого же размера блок памяти хранит около 64 тысяч единиц информации.
На рекламной фотографии изображены рядом два одинаковых по размеру муравья: один из них наш "лесной друг", другой - миниатюрный блок памяти, "вмещающий" толстую телефонную книгу.
Мода на пресловутые мини-юбки давно канула в прошлое, "мода" на мини-компьютеры буквально захлестнула нашу планету. Сейчас в мире эксплуатируется более двух миллионов мини-компьютеров, и их доля в общем объеме ЭВМ, по прогнозам специалистов, будет и дальше увеличиваться примерно на 35 процентов в год.
В Москве, на Ленинском проспекте, где находится фирменный магазин Министерства электронной промышленности "Электроника", можно увидеть не только самую современную магнитофонную, видеомагнитофонную и проигрывающую технику, но и новое чудо - персональную ЭВМ, которую можно приобрести в личное пользование. Большинство ее обладателей так и не ведает, как происходит работа этих ближайших родственников гигантских компьютеров, да и не нуждается в подобных знаниях.
Эта ЭВМ, снабженная дисплеем и клавиатурой пишущей машинки, пригодна для любых целей. Когда писалась эта книга, домашний компьютер помогал автору ее править, заменяя, вставляя или выкидывая на экране отдельные слова, строчки, абзацы и целые страницы текста, а затем с помощью специальной приставки отпечатал набело отредактированную рукопись. Он также ведал хранением используемых справок и фактов и корректировал правописание слов. Для этих целей он был оснащен специальной программой для обработки словесных текстов.
Брезжит на горизонте еще один "сладкий плод" антропоморфного электронного моделирования - фонетическая пишущая машинка, которая печатает произносимый текст с голоса со скоростью, превышающей возможность нормального его произнесения. Несколько моделей таких машинок уже сконструировал научный сотрудник Женевского университета Д. Граф. В таком устройстве голос человека, воспринимаемый микрофоном, преобразуется в электрические колебания соответствующих частот. После усилений речевой сигнал поступает на анализатор - 8 полосовых фильтров от 200 до тысячи герц, а затем на систему детекторов сравнения.
Система детекторов устроена так, что реле, соответствующее данному каналу, срабатывает тогда, когда уровень в нем больше среднего уровня в двух соседних каналах.
Когда система узнала произнесенный слог, включается блок, управляющий работой буквопечатающего устройства. Этот блок, пожалуй, самая хитрая часть фонетической пишущей машинки. Именно он заведует орфографией, то есть тем, чтобы слова были напечатаны не так, как они произнесены, а так, как они пишутся по законам конкретного языка. Интересно отметить, что печатная форма русских слов отличается от фонетической значительно меньше, чем, скажем, английских или французских. Это облегчает работу советских ученых, работающих над этой проблемой, и достигнутые успехи вселяют уверенность, что в ближайшее время появятся промышленные образцы компьютерных роботов-машинисток.
Еще одна мощная новинка компьютеризации - информационный робот, так называемая электронная домашняя газета. Зачем печатать газету, "портить" бумагу, если через день, буквально через несколько часов она станет "вчерашней". Телегазета - вот вечно динамичный и экономный вид издания, она существует всего в одном экземпляре и в то же время "издается" миллионным тиражом. Подобная система позволяет отображать на экранах телевизоров не только новости, но и тексты с разнообразной справочной информацией, с расписанием движения транспорта, сведения о репертуаре театров и кино, сводки погоды и т. п.
Футурологи утверждали, что телевизионные информационные газеты и справочники появятся после 1985 года. Однако болгарская электронная промышленность опередила все сроки. Уже действует экспериментальная система "Бултекст", которая способна по заказу из дома выносить на экран обычного телевизора 999 страниц справочного текста с иллюстрациями. Достаточно нажать клавишу приставки - и вы получаете возможность увидеть страницу вечерней газеты еще до того, как вам ее принесет почтальон. При этом не требуется ни мощных печатных машин, ни одного загубленного на бумагу деревца. Кроме того, в любое время дня вы узнаете погоду, расписание вылета самолетов, репертуар театров, результаты спортивных матчей. Можно еще проверить лотерейные билеты, заказать библиографические справки по новинкам литературы, "полистать" медицинские и технические справочники, словом, получить массу полезной информации.
Передачи ведутся из специальной студии, оборудованной ЭВМ с блоком памяти. При этом система "Бултекст" не занимает отдельного канала, домашняя компьютерная приставка позволяет убирать изображение идущей программы и вводить на экран с помощью машинописной клавиатуры текст любого запроса. В недалеком будущем удастся увеличить количество заказываемых страниц до шестнадцати тысяч. Даже энциклопедию можно будет листать, не заходя в библиотеку.
Высказывают мнение, что лет через двадцать значительная часть из нас будет работать на дому, используя компьютеры и вступая в деловые отношения с помощью электронной почты.
Для этого конструкторы разрабатывают экспериментальный телетерминал: комбинацию телефона, компьютерного терминала и телевизора с компактной клавиатурой и экраном. Настольное устройство отыскивает телефонные номера, делает вызовы, посылает и принимает послания и отображает хранящуюся информацию.
Такой робот-телефон в состоянии запомнить имена и фамилии тридцати ваших абонентов, произнесенных вслух громким голосом. Достаточно при этом однажды набрать их номер телефона, чтобы в дальнейшем вызывать нужных собеседников простым произнесением фамилии.
Как полагают специалисты, дистанционные копировальные устройства, до сих пор применявшиеся лишь в таких областях производства, как автоматизированное проектирование или подготовка управляющих программ для станков с числовым программным управлением, вскоре получат довольно широкое распространение. Мыслится это так. Нуждающиеся в "документированной" связи потребители подключат к своим телефонам копировальные установки. Документ или письмо, которое надо передать, закладывается в установку, после чего по телефону набирается номер адресата. Все остальное делается компьютером автоматически в течение нескольких минут. Документ прочитывается, информация кодируется в цифровой вид и передается на установку адресата, где снова превращается с помощью микропроцессора и чертежного устройства в документ.
Миниатюрная ЭВМ не только уютно расположилась у нас дома, но и "забралась в карман" современного специалиста не в переносном, а в самом прямом смысле. В ближайшем будущем там появится множество разнообразных и очень полезных электронных устройств.
Например, электронная "записная книжка" - миниатюрная комбинация пишущей машинки и компьютера.
В ней есть сорок слов внутренней памяти, по пятнадцать знаков каждое, и память легко можно расширить. Размер ее 30X5X0,5 см. Используется это устройство в служебных целях: составление памятных записок, рассылка приглашений, подсчеты, графики, расписание и прочее. Всю информацию можно в любой момент напечатать, подсоединив его к электронной пишущей машинке.
Другое устройство официально называют планирующим компьютером, а неофициально - электронным секретарем. Он "запоминает" тридцать семь сигнальных меток для контроля мероприятий за день: в заданное время раздается звонок, и на небольшом экране появляется сообщение. "Электронный секретарь" позволяет составить себе расписание на три года вперед.
И наконец, электронный переводчик - машинка не больше пачки сигарет. Набираешь слово на клавиатуре, и на зкранчике небольшого дисплея получаешь перевод на любой из десяти языков, да еще со звуковым сопровождением правильного произношения на иностранном языке.
Появился и наручный компьютер. Размером и формой он напоминает часы. Однако... Такую штуковину часами и не назовешь, ведь часы в соответствии со своим этимологическим смыслом должны отмерять часы, минуты, ну, наконец, секунды, и все. Конечно, некоторые показывают и число, и день недели - этим никого не удивишь.
Но вот та японская фирма, которая, выпуская на рынок новый образец товара, уже не захотела называть его часами. "Многоцелевой прибор времени" - глубокомысленно окрестила она его!
Такой "прибор" показывает и фиксирует секунды, минуты, часы, дни недели, число, месяц и даже год.
- Ну, это уж слишком, зачем год-то, ведь забыть его трудно.
Очень просто, если не фиксировать в памяти месяц, то число дней в месяце необходимо "переставлять" самостоятельно 30-31; 28-29. Если фиксировать месяц, то пересчет дней месяца происходит автоматически, за исключением календаря на февраль, ведь один раз в четыре года февраль имеет не 28, а 29 дней. Вот для этого нужно фиксировать год. Итак, пересчет всех параметров времени происходит автоматически, без вмешательства человека.
Кроме указанных функций, такой прибор имеет будильник - звуковой сигнал, который можно установить на любой час и минуту суток, и он разбудит вас мелодичным "динь-динь" или нежным "бип-бип-бип"... или даже сыграет любимую мелодию. Кроме того, эти "часы" в начале каждого часа легким "динь-динь" сообщают, что еще один час "канул в Лету". Можно зафиксировать и вызвать из памяти "второе время", скажем местное или московское. Кроме того, в часах находится секундомер с точностью до 1/100 секунды. Секундомер имеет специальную кнопку для считывания показаний, при ее нажатии бег цифр останавливается, а сам секундомер в это время работает. Моменты включения и выключения секундомера для самоконтроля сопровождаются звуковым сигналом "бип". Но вот и все, что касается функций времени. Немало, но это, впрочем, типовой набор современных "хороших" часов.
Теперь компьютер. Это обыкновенный калькулятор, он имеет 12 клавиш цифр и 5 клавиш действий +, -, :, X. Производимые операции +, -, :, X высвечиваются на дисплее - экране, где раньше были часы и мипуты. Еще можно использовать компьютер как записную книжку для всяких номеров: телефон, дата и тому подобное. И наконец, эти компьютеро-часы имеют... игру. Игру, в которую можно играть с компьютером (не зачатки ли это интеллектуальности?).
При нажатии на "игровую" клавишу на дисплее начинается бег цифр, цифры эти случайные, и игра состоит в том, чтобы сбить эти цифры до того, как они достигнут противоположного края экранчика часов. Чтобы сбить цифру, нужно набрать аналогичную в специальной позиции того же дисплея. Набор цифр осуществляется путем нажатия на одну из клавиш часов.
Причем, если на экране цифры появляются в случайном порядке, то в специальной позиции цифры появляются только в порядке возрастания: 1, 2, 3, ..., О, и зат м опять, начиная с 1 до 0. В несовпадении этих последовательностей и состоит изюминка игры. Часы играют несколько туров, причем следующий начинается только в том случае, если в предыдущем игрок набрал не менее определенной суммы очков, иначе компьютер сочтет вас слишком слабым игроком и не станет больше тратить на вас свой интеллект.
Если вы шли от тура к туру достойно, не набрав ни одного штрафного очка, - это значит, что вы сбили все цифры, не дав им дойти до противоположного края дисплея, компьютер несколько меняет стратегию игры, цифры теперь идут быстрее, и порядок их запуска становится все "противоположнее" естественному порядку набора: 1, 2, 3, 4... Если и эти трудности вы преодолели, включается третья стратегия игры, при которой цифры появляются уже на позицию ближе к противоположному краю, и возникает еще более хитрая их последовательность. Во время игры компьютер подбадривает правильное нажатие клавиши одобрительным "дзинь", а ошибочный набор печальным "динь", окончание тура и всей игры сопровождается своими особыми сигналами.
Игра сама по себе предназначена для игры, однако применять ее можно для следующих бытовых целей:
- тренировка внимания, реакции, сообразительности;
- сброс напряжения, расслабление, заполнение паузы;
- самооценка-самоконтроль: если игра ведется по постоянной стратегии, то сумма очков, набранная в каждый момент времени, характеризует общее состояние реакции, внимания и сообразительности.
Существуют и другие чудо-часы: с радиоприемником, с телевизионным экраном (сам телеприемник помещается в кармане), часы, выговаривающие время, часы-переводчик со словарем на несколько тысяч слов и таблицей неправильных глаголов.
Все эти роботы-часы уже выпускаются серийно и могут быть приобретены, правда, за сравнительно высокую плату.
Совсем скоро можно будет говорить и о мощной центральной микро-ЭВМ, управляющей всем комплексом ведения домашнего хозяйства - от стирки белья и приготовления пищи до регулирования температуры и влажности воздуха в квартире.
Эти чудеса микроэлектроники не являются фантастикой: вот последние известия с фронта компьютеризации.
Компьютер для домашних работ, который сможет обучать детей по заданной программе, управлять электроплитой и стиральной машиной, следить за расходом электроэнергии, самостоятельно выписывать счета и делать десятки других домашних работ, - эта мечта скоро станет реальностью для многих болгарских домохозяек. Такой прибор будет производить приборостроительный завод в городе Правец после окончания его реконструкции.
По мере того как БИСы преобразовывают ЭВМ в товары массового потребления, они становятся достаточно простыми, чтобы ими могли пользоваться буквально все!
И сейчас уже нет сомнений, что микропроцессоры и микро-ЭВМ найдут широчайшее применение в быту, а также в автоматизации технологических процессов практически любой отрасли народного хозяйства. Это будет не только управление отдельными станками и роботами, но и целыми производственными комплексами в машиностроении, в обрабатывающих отраслях промышленности. Они примут участие в создании гибких производственных систем. Они облегчат управление не только отдельными тракторами, комбайнами и другими агрегатами, но и целыми комплексами в сельском хозяйстве.
Они освоят диагностику, наблюдение за больными, проведение анализов в медицине или уплотнение каналов связи и ускорение передачи информации в технике связи. Трудно назвать сейчас такую отрасль, где бы микрокомпьютеры не совершили или не совершали революцию.
УМНЫЕ ВЕЩИ
Если бы микропроцессор не сделал ничего более, кроме уменьшения размеров существующих компьютеров, и то он был бы достоин глубокого уважения. Однако микропроцессор сделал больше - он преобразил лицо обычных вещей. Благодаря низкой стоимости стало возможным включить микропроцессор в большинство обычных машин и аппаратов. Любую машину микропроцессор наделил способностью принимать решения, хранить в памяти программу работы и инструкции на различные случаи "жизни", автоматически регулировать свою работу в зависимости от складывающихся условий. За это чудесное преображение микропроцессор достоин самого величественного памятника.
Наша электронная промышленность уже в течение ряда лет выпускает несколько наборов микропроцессоров и типов микро-ЭВМ. Они нашли широкое применение в технологическом оборудовании для производства электронных изделий, и сейчас настал черед внедрения их в различные массовые объекты народного хозяйства. В чем принципиальные преимущества использования в массовых объектах управления микропроцессоров и микроЭВМ?
Главное, пожалуй, состоит в малых габаритах, небольшой потребляемой мощности и в более низкой стоимости микропроцессорных вычислительных систем, которая еще более снижается при использовании однокристальных моделей, где в одной кремниевой пластинке объединены микропроцессор и запоминающие устройства. Уже одно это позволяет применять микровычислительную технику в тех областях, где ранее вычислительные и управляющие машины были недоступны из-за "барьера стоимости" и невозможности организовать выпуск десятков и сотен тысяч машин в год.
Благодаря минимальным размерам микропроцессорную систему можно разместить под суппортом станка, в кабине трактора, в корпусе робота-манипулягора, в магнитофоне, в телефонном аппарате. В сочетании с доступностью это позволяет вводить микропроцессоры в устройства, где ранее применение вычислительной техники было невозможным или нерентабельным.
С применением микропроцессоров уже выпускаются некоторые типы измерительной, связной (в том числе телеграфной), медицинской, бытовой аппаратуры, систем электронного управления металлообрабатывающими станками, автоматизированных систем управления технологическими процессами - АСУТП.
"Одномодульная" ЭВМ внутри кассового аппарата сама оформляет чеки и счета, сама, если нужно, контролирует наличные запасы товаров. В электронных стимуляторах сердечной деятельности она регулирует число ударов сердца. Она устанавливает рабочую температуру в термостатах, настраивает радиоприемники, перекачивает газ по магистральным трубопроводам, управляет режимом работы автомобильных двигателей... Ей доверяются роботы. То же самое можно сказать и о научноисследовательской аппаратуре, такой, как установка для синтеза генов. Машины теперь сумеют работать гибко и осмысленно, и это вызовет взрывообразный рост производительности труда, о котором мы потом в один прекрасный день будем, вероятно, говорить как о "второй промышленной революции".
Еще пример - автомобильный двигатель. Оптимизируя режим его работы, микропроцессор может обеспечить экономию не менее 10 процентов горючего. С его помощью можно создать систему автоматического включения и выключения светильников в жилых помещениях и на лестничных клетках, которая реагирует на присутствие человека. Внедрение таких систем только в крупных городах может обеспечить годовую экономию не менее 1,3 миллиарда киловатт-часов электроэнергии.
Другое перспективное направление использования микропроцессорной техники в быту - устройства, позволяющие отображать на экранах телевизоров тексты с разнообразной справочной информацией, с расписанием движения транспорта, сведения о репертуаре театров и кино, сводки погоды и т. п. Широкое применение найдет микровычислительная техника и в других бытовых радиоэлектронных приборах.
Сейчас уже нет никаких сомнений, что микропроцессоры и микро-ЭВМ найдут широкое применение в быту, в автоматизации технологических процессов практически любой отрасли народного хозяйства, в самых разных сферах обслуживания человека. Это управление не только отдельными станками, но и сложными производственными линиями в машиностроении, в обрабатывающих отраслях промышленности и создании гибких производств с применением роботов.
Микропроцессор преображает лицо обычных вещей.
Мы давно привыкли к словам "АСУ заводом", "АСУ цехом", "АСУ транспортными потоками". Сейчас приходится привыкать и к таким, как "АСУ стиральной машиною", "АСУ сверлом", "АСУ лифтом", "АСУ автомобилем". Вот некоторые примеры.
Парижская фирма "Отнс" начала производить лифты еще в прошлом веке. Словом, опыт есть. Последняя разработка - вертикальное средство транспорта со специализированной мини-ЭВМ "Элевоник" и синтезатором человеческого голоса. Говорящее устройство сообщает направление движения, предупреждает о перегрузке кабины, советует, как лучше вести себя в скоростном лифте. Всего предусмотрено 110 фраз, включая и приветствие. Но основная функция ЭВМ - экономить энергию.
Блок логики учитывает этажи здания, где больше всего входит людей, и около них держит свободные кабины.
Радиотелефон в автомобиле - далеко не новость.
Финские и шведские инженеры установили в такси еще и небольшой ящичек, в котором скрыто печатающее устройство, заимствованное у компьютерных систем телеобработки данных. Теперь водитель получает радиозаказ на вызов в виде напечатанного текста с точным адресом и фамилией, временем необходимого прибытия и маршрутом. Это гораздо удобнее, чем самому записывать, держа одну руку на баранке руля и приживая трубку плечом к уху. Дальность такой связи 25 километров.
Роль микропроцессора, печатающего текст телеграммы, на этом не кончается. Он служит еще и электронным счетчиком, и сверхбыстрым бухгалтером. В конце рабочего дня он сам подсчитывает всю выручку, количество посадок, километраж пробега, часы простоя, расход бензина, среднюю скорость за день. Водитель нажимает кнопку, получает чек с отпечатанными данными и отправляется в диспетчерскую.
Инженеры комбината РФТ (ГДР) снабдили свою новую АТС электронной машиной третьего поколения. Тем самым и весь телефонный узел перешел в разряд третьего поколения. Электроника уменьшила габариты АТС и увеличила число абонентов. Она на 40 процентов экономит электроэнергию по сравнению с прежними типами и берет на себя весь анализ неисправностей, сообщая на центральный пульт координаты места повреждения.
Что касается выгод для абонентов, то их даже трудно перечислить. К примеру, можно, набрав вечером код на домашнем телефонном аппарате, заказать на утро акустический сигнал, заставляющий вас проснуться. Когда вы разговариваете с одним человеком, а вам звонит другой, ЭВМ обращает ваше внимание на это, вызывая предупреждающее постукивание. Не вешая трубку, вы можете попрощаться с первым и начать переговоры со вторым абонентом. А потом нажатием одной кнопки снова вызвать первого.
Дрель - инструмент универсальный, им пользуются люди самых разных профессий, не говоря уже об умельцах. Западногерманский завод механизированного инструмента "Фаин" первым снабдил электродрель компактным микропроцессором. Что же это дает, кроме удорожания?
Прежде всего чудеса электроники повышают долговечность этого ручного инструмента, и высокая цена быстро окупается. Дело в том, что маленький компьютер как бы чувствует сопротивление материала - четко отличает, например, бетон от древесины, пластмассу от алюминия и бесступенчато регулирует обороты и величину вращательного момента. Это особенно важно, когда отверстие сверлится в нескольких наложенных друг на друга деталях из разных материалов. Кроме того, он экономит электроэнергию. Если вы дрелью завинчиваете шурупы, то мотор автоматически отключается при малом усилии, то есть при холостом ходе в конце операции.
Такие "интеллектуальные" машины теперь смогут работать гибко и осмысленно, и это вызовет взрывообразный рост производительности труда, о котором в один прекрасный будущий день мы, вероятно, будем говорить как о "второй промышленной революции". Такой рост производительности делает экономически выгодным использование устаревших, казалось бы, безвозвратно канувших в Лету машин, например паровоза, парусника и ветряных мельниц. Трудно в это поверить, но ветряная мельница с микропроцессором или паровоз, или паруса, управляемые мини-ЭВМ, - это не шутка.
Вот характерные примеры. Голландия - классическая страна ветряных мельниц. Еще около ста лет назад там насчитывалось десять тысяч деревянных ветряных мельниц, которые и зерно мололи, и выкачивали воду с полей, расположенных ниже уровня моря. Теперь в стране осталось около 900 этих ветеранов, но они не столько работают, сколько служат украшением ландшафта на радость туристам. Между ними жужжат уже своими пропеллерами тысячи новых мельниц, современных, экономичных, предназначенных только для выработки электроэнергии. Владельцы теплиц и небольших предприятий охотно пользуются теперь ветряками, чтобы не платить электроконцернам огромные деньги за энергию. Эксперты полагают, что в Голландии можно установить до 400 тысяч небольших ветряков с диаметром крыльев 10 метров. Идут разговоры о создании "парков ветряных мельниц", где несколько десятков ветряков, управляемых компьютерами с гидравлически переставляемыми пропеллерами, могли бы использовать энергию ветра самым эффективным образом. А в городке Паттен недавно вступила в строй опытная ветротурбина высотою 22 метра, ее роторные пропеллеры имеют в диаметре 25 метров.
Многие попытки возродить "эру парусов" на морях продиктованы лишь ностальгией по быстроходным - клиперам прошлого. Но есть и другие мотивы. Одна из английских фирм начала разработку парусной оснастки для современных торговых судов в качестве вспомогательной "силовой установки". По заявлению руководства фирмы при проектировании используются последние достижения в аэрокосмической промышленности и судостроении. Ставится цель создать систему парусов, полностью управляемую ЭВМ, что обеспечит постоянную наивыгоднейшую их установку с помощью сервомоторов.
Таким образом, не потребуется большой команды для ее обслуживания. По расчетам, внедрение этой системы позволит судовым компаниям экономить до 20 процентов топлива.
Уже год на регулярных торговых линиях в Китайском море ходит танкер "Син Аитоку мару" с автоматизированными парусами и двигателем. Обследованы разные комбинации скорости танкера и мощности двигателя - паруса всегда оказывались выгодными. Так, по одной из записей в вахтенном журнале: при скорости 20,4 км/ч при убранных парусах от двигателя требовалась мощность 612 кВт (834 лошадиные силы), при поднятых - скорость повышалась на 2,8 км/ч, а мощность уменьшалась на 73,5 кВт, то есть на 12 процентов. Топлива за год сэкономлено на 180 тысяч долларов.
Две мощные железнодорожные компании США - "Берлингтон Нортерн" и "Чесси Систем Рейлроуд" - в настоящее время серьезно заняты проблемой внедрения паровозов нового поколения на угольном топливе в качестве перспективной альтернативы дизелям и электровозам. В основе такой переоценки поездной тяги лежат два соображения: высокая стоимость нефти и техническая возможность создания совершенно новых паровозов с использованием автоматики и электроники.
Новый локомотив "АСЕ 3000" будет иметь мощность 2200 киловатт, длину пробега без пополнения топливом 800 километров, скорость 130 километров в час. Он не будет дымить, как прежде. Это будет достигнуто благодаря двухступенчатому циклу с применением оптимального четырехцилиндрового парового двигателя и управлению процессом сжигания топлива с помощью микропроцессора. Так удастся избежать потерь пара, тепла, а значит, и потерь энергии. Существующие паровозы даже при благоприятных условиях имели к.п.д. 7 процентов. У нового он будет достигать 13.
РОБОТЫ ВНУТРИ НАС
Несколько лет назад 22-летняя Нэн Дэвис из Детройта, штат Огайо (США), попала в автомобильную катастрофу, следствием которой стал поперечный миелит.
Нэн была обречена на неподвижность, сообщает журнал "Изобретатель и рационализатор" (1983, No 6). "С помощью компьютера д-р Дж. Петровский вновь научил девушку ходить. К ножным мускулам были прикреплены 30 электродов и сенсорных датчиков. Электрические импульсы, посылаемые компьютером, стимулируют мышцы. С мускулов сигналы снова возвращаются на ЭВМ, чтобы машина могла координировать движения ног. Сейчас изобретатель работает над компактным компьютером размерами не больше 25X15 сантиметров, чтобы больной мог носить его с собой на спине. В дальнейшем д-р Петровский собирается вживлять микропроцессоры непосредственно в мышцы больных".
Идея создания искусственных "запчастей" к организму человека для замены больных или поврежденных органов не нова. Но только в наши дни тесное сотрудничество специалистов различных областей - от химии полимеров и аэрокосмической техники до микроэлектронной роботологии и биологии позволило предоставить медикам набор технических "чудес": искусственную кожу, искусственную кость и искусственную кровь, управляемые микропроцессором конечности, внутриглазные линзы, миниатюрные насосы, заменяющие поджелудочную железу, искусственные почки и кровеносные сосуды.
Здесь робототехническое моделирование человеческой природы становится опять самой природой.
Однако то, что выглядит легким в теории, на практике часто оказывается неимоверно трудным. Сердце, например, - это, попросту говоря, обыкновенный насос.
Однако он "обслуживает" около ста тысяч километров кровеносных "трубопроводов", делая по сто тысяч ударов ежедневно все 365 дней в году. И так в продолжение семидесяти лет и более! Несмотря на два десятилетня интенсивных и дорогостоящих исследовательских работ, достойное искусственное сердце все еще не стало реальностью. В университете штата Юта было разработано полностью искусственное сердце "Джарвик", насос из полиуретана и алюминия, приводимый в движение воздухом, но применяться на практике оно сможет самое раннее после 1987 года.
"К 1996 году бегуны на марафонские дистанции, снабженные "высокоэффективными искусственными сердцами, могут быть дисквалифицированы из-за своего несправедливого преимущества над остальными", - говорит доктор У. Колф из университета штата Юта.
Появились и другие не менее интересные изделия.
Электрокардиостимуляторы (электронные стимуляторы сердечной деятельности) уже носят в себе сотни тысяч пациентов, которым их вживили в организм для регулирования сердечных сокращений. Искусственные кровеносные сосуды из полиэфирного волокна используются для помощи пациентам, страдающим сужением просвета артерий. Многим делается замена больного тазобедренного сустава искусственным. Эта операция теперь почти всегда проходит успешно после того, как начали применяться конструкционные материалы из акриловой пластмассы и высокопрочных сплавов. Другим общеупотребительным устройством является искусственное стремечко из нержавеющей стали и тефлона (фторопласта) для замены крохотной ушной косточки, по форме похожей на стремя и располагающейся внутри среднего уха. С его помощью восстанавливают слух больным, страдающим глухотой из-за отосклероза (патологического разрастания костной ткани).
С появлением микроэлектроники стали возможными революционные изменения в области создания искусственных конечностей. У истоков кибернетического протезирования стояли советские специалисты. Первая биоэлектрическая рука, созданная А. Кобринским, с успехом демонстрировалась на многих международных конференциях. Развитие этого направления в наши дни также не остается незамеченным. Оно воплощено в новом изобретении студентов и молодых инженеров МВТУ имени Н. Баумана, получившем премию Ленинского комсомола за 1981 год, - механической руке, управляемой биопотенциалами мышц. Рука послушно и точно повторяет движение своего повелителя-оператора. Тот, в свою очередь, при перегрузке робота ощущает электрические сигналы. Почувствовав, что машине приходится слишком тяжело, оператор может вовремя уменьшить нагрузку.
Это уже второе, очувствленное поколение биорук.
Активно ведутся эксперименты по созданию запчастей человеческих конечностей и за рубежом. Были разработаны так называемые "рука из Юты" и "бостонский локоть" (в создании которого участвовали четыре университета и исследовательских центра города Бостона).
Эти искусственные конечности, имеющие привод, изготовлены преимущественно из легких композитных материалов на основе графита и пластмасс. Они снабжены аккумуляторными батареями, микроэлектронными схемами и наборами электродов, которые прикрепляются к плечевым мышцам. Люди с ампутированными руками учатся управлять этими устройствами в значительной мере так же, как естественными конечностями, - используются биологические обратные связи. Мозг посылает мышцам команду двигаться. Сокращаясь в ответ на эти сигналы, мышцы вырабатывают импульсы биотоков, которые можно зарегистрировать с помощью электродов на поверхности кожи. Отсюда сигналы передаются к искусственной конечности и преобразуются в движения.
Чтобы поднять тяжелый предмет, весящий, скажем, 20 килограммов, инвалид просто напрягает мышцу.
"С помощью этой руки нельзя играть на фортепиано или на скрипке, говорит разработчик "руки из Юты" С. Джекобсен, - однако многим она эффективно заменяет утраченную конечность".
Инженеры-биомеханики создали также управляемый ЭВМ коленный сустав с голенью, известный под названием "колено МТИ" (МТИ - Массачусетский технологический институт). Внутри его имеется встроенный микропроцессор, осуществляющий приспособление устройства к индивидуальной походке человека.
Быстрый прогресс микроэлектроники является причиной революции в медицинской технике, которая приведет к созданию новых искусственных органов. Программируемые "инсулиновые насосы", которые носятся на ремне или вживляются в организм, заменяют поджелудочную железу, контролируя уровень сахара в крови у диабетиков. Также создано экспериментальное "электронное ухо" для больных, страдающих некоторыми разновидностями глухоты. Во внутреннее ухо им вживляются электроды, которые соединяются с крошечным микрофоном и интегральной схемой, носимыми на теле. Звук, преобразованный в электросигналы, возбуждает слуховой нерв, посылая в мозг электрический образ, воспринимаемый им в виде речи.
Но для более сложных органов даже современной техники недостаточно. Имплантируемое искусственное легкое, например, появится не скоро. Самое совершенное, чего удалось достичь на пути к искусственному легкому, - это клиническая плазмофоретическая установка для очистки крови от токсических веществ. Тем не менее некоторые специалисты убеждены, что большинство важных органов тела получит в конечном счете свои искусственные "двойники". "К исходу века каждый значительный орган, за исключением мозга и центральной нервной системы, будет иметь искусственные замейители", говорит доктор У. Добелл. Его институт искусственных органов в Нью-Йорке проводит работы по замене поджелудочной железы, сердца, уха и глаза.
Один из самых интригующих экспериментов связан с электронным зрением. Исследователи из университета Западного Онтарио вживляли электроды в зрительную зону коры головного мозга. ЭВМ, соединенные с электродами, затем передавали в мозг электрические импульсы, и пациенты "видели" звездообразные образы, носящие название фосфенов. У. Добелл, который был пионером этих работ, говорит, что они, возможно, и не приведут к созданию "электронного глаза", но он представляет себе будущую модификацию подобного устройства с сотнями электродов, вживленных в мозг, с миниатюрной телекамерой внутри искусственного глазного яблока и с микро-ЭВМ, размещенной внутри оправы очков.
Но пока до этого еще далеко, во многих странах ведутся работы по созданию портативных переносных радарных устройств, чтобы облегчить слепым ориентирование в окружающем пространстве.
Уже созданные конструкторами аппараты действуют в ультразвуковом или микроволновом диапазонах, которые не воспринимаются человеческим ухом. Основная трудность создания подобного зрительного аппарата состоит в разработке устройства, способного четко и однозначно сообщить слепому результаты измерений, так как вся информация должна быть передана лишь в виде слуховых или осязательных сигналов. Ученые института визуализации данных в городе Сан-Франциско (США) работают над тем, чтобы расшифровку схематической "картинки", получаемой с помощью телекамеры, возложить на микропроцессор. Разработанное ими устройство способно распознавать воспринимаемое телеглазом изображение и трансформировать полученную информацию в синтезированную человеческую речь. Компьютер называет характер опознанного препятствия, его угловое положение относительно пути следования человека и расстояние до него.
Чтобы уличный шум не заглушил голосовую информацию, она дублируется с помощью вмонтированного в специальный пояс электромеханического вибратора.
Легкое постукивание о тело сообщает о направлении на объект. В первом опытном образце компьютерного зрения миниатюрную телеустановку носят за плечами.
Изображение в числовом коде обрабатывается процессором. Например, две близко расположенные параллельные вертикальные контурные линии обозначаются термином "столб". Это и дерево, и фонарь, и труба. Связанные между собой вертикальные и горизонтальные контуры обозначаются термином "куб". Это и автобус, и почтовый ящик, и ларек. Микропроцессор формулирует соответствующую условную фразу и возбуждает в поясе один из шестнадцати вибрирующих элементов, расположение которого соответствует направлению, а высота тона - расстоянию. Согласно заложенной программе микропроцессор сообщает данные о препятствиях на пути каждые полсекунды, то есть при нормальной скорости пешехода через каждые полметра.
Кажется, что создание "искусственного человека" не такая уж далекая перспектива. Тогда окажется, что ситуация, описанная в рассказе Рэя Брэдбери "Судебный процесс", не так уж фантастична. Там шла речь о том, что фирма, занимающаяся протезированием, допротезировалась до того, что в ее клиенте, известном гонщике, уже не осталось ни одной "живой части", и так как он не оплатил в срок задолженность, фирма настаивала, что он теперь является ее собственностью.
По крайней мере "полноразмерные" копии человека, созданные в настоящее время, ведут себя, на зависть Анри Дро, совершенно "естественно". Вот, например заметка из парижской газеты "Интернешнл геральд трибюн" под названием "Роботы из семейства Мицуно".
Посреди лаборатории стоит С. Мицуно, а рядом с ним кукла в человеческий рост, точное подобие Мэрилин Монро - блондинка, с томными голубыми глазами, в платье с глубоким вырезом. Подобно заботливому отцу, С. Мицуно любовно разглаживает ее локоны, поправляет колье. Но вот "Мэрилин", как по волшебству, оживает. Она лучезарно улыбается, отвешивает поклон и, подыгрывая себе на гитаре, начинает петь. В такт дыханию у куклы поднимаются и опускаются розовые плечи, а когда она поет о чем-то грустном, то прикрывает глаза. Кончив петь, "Мэрилин" игриво подмигивает.
С. Мицуно, 44-летний художник и изобретатель, создал, кроме нее, еще девять кукол-роботов.
Первым его творением был "Томас Эдисон". За ним последовали "двойники" Джона Ф. Кеннеди, знаменитого артиста театра Кабуки Томасабуро Бандо и неизвестной японки, потом появилась целая семья фантастических существ феи, русалки и свирепый самурай.
"Семейка С. Мицуно" мгновенно завоевала популярность. С середины 1970-х годов его куклы регулярно появляются на всех промышленных ярмарках и на экранах телевизоров. А токийский универмаг Кобэ взял "Мэрилин Монро" напрокат на все лето, чтобы привлекать покупателей.
Изготовлением роботов С. Мицуно начал заниматься в 60-х годах, когда японская электроника переживала бум. В ту пору уже существовали радиороботы. Но, по его мнению, они были "слишком медлительны и примитивны". С. Мицуно решил сконструировать своего робота, и через восемь лет появился "Томас Эдисон". Больше всего времени, как ни странно, потребовалось для воссоздания искусственной кожи, которая, по замыслу автора, не должна была отличаться от человеческой.
С. Мицуно занялся химией и наконец получил мягкую, эластичную кожу из винила, которую он запатентовал.
Внутри "Мэрилин Монро" действует 80 соленоидов, "Именно столько мускулов занято в движениях живого человеческого тела и лица, которые кукла имитирует", - поясняет С. Мицуно.
Разумеется, до человеческого уровня этим игрушкам еще далеко, они всего лишь искусно копируют механические движения человека, однако свойства программируемоеT на ту или иную "манеру поведения" позволяют вполне оправданно относить их к роботам первого поколения.
Совсем другое дело - кибер, разработанный группой исследователей одной из токийских лабораторий робототехники. Это человекоподобный робот с руками, ногами, зрительным, слуховым и речевым аппаратом и обладающий "интеллектуальными" способностями на уровне двух-трехлетнего ребенка. Он может, в частности, выполнить просьбу отыскать что-либо в помещении и принести, а также отвечать на вопросы. Здесь, как читатель, вероятно, сумеет сам разобраться, мы имеем типичный пример робота третьего поколения, однако его антропоморфность ставит перед нами некоторые дополнительные философские проблемы.
ЗАВОДЫ - РОБОТЫ
ЧТО ТАКОЕ СОВРЕМЕННОЕ ПРЕДПРИЯТИЕ?
С точки зрения человека неискушенного, предприятие будущего представляется этакой "вещью в себе". Что мы знаем о нем? Мы можем лишь утверждать, что это напичканный электроникой и автоматикой завод, у проходной которого висит незамысловатая табличка: "Людям вход строго воспрещен!"
Относительно прочих свойств этого завода будущего мы многого сказать не сможем, это и не удивительно, ведь речь идет о заводе будущего, а мы живем в настоящем. Здесь нам следует без стеснения обращаться к специалистам, профессиональный долг которых состоит, в частности, и в том, чтобы заглядывать в это будущее. Но, обратившись к ним, не стоит удивляться, если их ответы и мнения покажутся нам не совсем понятными, порой странными и претенциозными.
- Современное предприятие должно работать так, чтобы его эффективность не зависела от величины партий, которыми выпускается изделие!
- Современное предприятие - это такое, где материалы практически не лежат без движения!
- Современное предприятие начинается там, где человек покидает непосредственное производство!
Попробуем разобраться в этом конгломерате суждений. Специалисты утверждают, что самая характерная черта современного "завода будущего" это то, что его эффективность не зависит от величины партии, то есть ему одинаково удобно и выгодно производить и миллион одинаковых шестеренок, и миллион совершенно разных.
И тут мы должны вспомнить, что самая характерная черта недавнего прошлого - это ужасающая тенденция к единообразию массового производства, зародившаяся еще в недрах промышленной революции. Только предельная массовость дает максимальную выгоду. Представьте себе, например, что вам нужно отчеканить тысячу одинаковых значков. Сначала следует изготовить штамп - форму для чеканки. Готовится он из твердого металла, и сделать его поэтому довольно непросто, но зато, когда он наконец закончен, дальнейшее представляется удивительно простым, - шлепай медные или алюминиевые кружочки, и порядок. Чем больше мы продадим наших значков, тем быстрее вернется к нам и сумма, заплаченная за изготовление штампа, и тем большую прибыль мы получим.
Представьте себе, что значки наши предназначены не для самой широкой публики, а изготавливаются для какого-нибудь учреждения, скажем, вуза, которому нужна небольшая партия. Может оказаться, что величина этой партии не в состоянии окупить цену, заплаченную за изготовление штампа. Что делать? Поднять цену на единичное изделие и за счет этого добиться рентабельности?
Так обычно и делается. Ну а если нужно изготовить всего, скажем, пять значков? Представляете, какую цену нужно заломить за каждый, чтобы "не вылететь в трубу"?
Так вот, современное предприятие, например, по производству значков, должно настолько легко перестраиваться с одного значка на другой, чтобы ему было одинаково выгодно делать и большие и маленькие партии, и даже отдельные экземпляры, и даже все вперемежку: вкрапливать отдельные значки или мелкие партии в поток массового заказа. Возможно ли такое? Нет! скажет неинформированный пессимист. Да! -ответит вдумчивый читатель, поверивший в возможности роботизации. Нужно поручить изготовление штампов роботу, а процесс программирования робота отдать на откуп ЭВМ.
Это и будет современная производственная система, которую мы по праву окрестили заводом-роботом. Итак, гибкость - свойство завидное и очень выгодное. Что еще характерно для завода-робота?
"Предприятия, которые сократят время нахождения материалов без движения, впервые можно будет назвать современными предприятиями", утверждают организаторы производства. Как это без движения? Давайте заставим материалы все время двигаться, добьемся ли мы звания современного завода? Нет! Что же это за проблема?
Оказывается, очень серьезная.
Время, затрачиваемое сейчас на предприятии на переработку материалов и обработку деталей, составляет всего лишь от 1 до 2,5 процента общего времени, протекающего от получения заказа до отгрузки готовой продукции. Большая часть времени уходит на перемещение материалов или на то, что они лежат без движения на полу. Утверждают, что, в свою очередь, и из этого мизерного времени обработки и сборки время действительной обработки на станках составляет порядка 15-20 процентов. Пожалуй, специалисты, которые сократят время нахождения материалов без обработки, впервые создадут современное предприятие. Естественно, мощный рычаг процесса сокращения потерь времени - комплексная роботизация.
Роботизация позволяет успешно бороться и с пресловутой "незавершенкой". По данным американских специалистов, 95 процентов своего времени заготовка проводит в ожидании очередной обработки или в транспортировке, а из того, что остается, то есть из пяти процентов, сам процесс обработки на станке занимает менее 30 процентов. Таким образом, для непосредственного изготовления детали используются лишь 1,5 процента времени нахождения ее на заводе. Поэтому, например, одним из центральных элементов японской производственной философии служит концепция "делать все вовремя".
Речь идет о системе, при которой материалы и компоненты доставляются в цехи лишь по мере надобности, а не накапливаются там. При этом достигается существенная экономия, так как обычно одна треть заводских площадей используется для хранения материалов и продукции.
Наконец, рассмотрим последний "нечеловеческий" фактор.
Сегодня мы нередко сталкиваемся с ситуацией, когда человек в силу своих ограниченных физических и психических качеств становится тормозом на пути развития производства, вынуждает оплачивать свое присутствие у печи или в цехе круглой суммой на создание приемлемых условий труда. Роботизация снимает эти ограничения и тем самым открывает пути к качественным преобразованиям в сфере производства, В цехах "безлюдного" завода можно установить станки, не нуждающиеся в эстетическом оформлении, без всяких гладких обводов, которые так "радуют глаз". Эго почти на треть сократит себестоимость станков. Понадобится значительно меньше металла, пластмасс, других материалов. Оператор, удаленный от станка, будет находиться в комфортабельных условиях, станки тогда можно располагать прямо на полу, а не поднимать их на "уровень человека", на что сейчас идет немало металла.
В автоматическом цехе можно не только снизить общие чисто человеческие требования к эстетическому оформлению, но и к воздушной среде цеха, существенно сократить и реорганизовать его площадь и объем. Такой цех совсем не обязательно не только проветривать (вспомним дорогостоящую систему вентиляторов), но и освещать - ведь робот может использовать ультразвуковое или инфракрасное зрение.
Все это приведет к резкому сокращению затрат и сроков строительства, сэкономит от 25 до 40 процентов цемента, железобетона, металлоконструкций, электроэнергии и других ресурсов. Резкое сокращение числа рабочих и служащих предприятия уменьшит затраты на соцкультбыт и другие элементы инфраструктуры, как правило, превышающие затраты на строительство предприятий в несколько раз.
Подобный завод-робот можно просто отключить, как пылесос или радиоприемник, когда в нем нет нужды, и снова включить - когда нужда появится. Так на производственную сцену стали выходить участки, цехи и заводы, даже относительно названия которых нет пока единого мнения. Вот некоторые примеры разных названий, в сущности, одного и того же: КАПС комплексно-автоматизированная производственная система; ПАЛ производственно-автоматическая линия; ГАП - гибкое автоматическое производство; МАК - механообрабатывающий комплекс; РТК - робототехнический комплекс; ИПС - интегрированная производственная система; ПМП переналаживаемое многономенклатурное производство; ГПС - гибкая производственная система. Последний термин сейчас, пожалуй, понимается и принимается всеми и более или менее одинаково. И все же всем приведенным выше названиям мы предпочли термин "завод-робот". Что же означает это предпочтение?
Прежде всего такому заводу присуща гибкость, переналаживаемость с одного вида изделия на другой. Вовторых - адаптивность к новым формам управления.
В-третьих - интеллектуальность в проектировании новых изделий, в планировании производства.
Одним из принципов смены поколений роботов является степень участия человека в управлении. Этот принцип с успехом применим и к нашему заводу-роботу.
Завод-робот первого поколения перепрограммировать довольно сложно, каждая его составляющая - свой "орешек" программизма.
Завод-робот второго поколения уже сам отчасти "помогает" себя программировать, он построен из унифицированных блоков технологического и программного обеспечения, управление им централизовано и автоматизировано.
Завод-робот третьего поколения обладает развитым интеллектом, сам проектирует, планирует и управляет производством своих изделий. Сам контролирует точность и свойства инструментов (не затупились ли) и сам подает сигнал на их замену.
Возможна и другая, историческая классификация трех поколений заводов-роботов. Первое поколение характеризуется тем, что на таких предприятиях внедрена массовая автоматизация на базе манипуляторов и станков с числовым программным управлением (ЧПУ). Второе поколение заводы, имеющие совершенные обрабатывающие центры и гибкие транспортные системы. Третье поколение - умное конструирование, планирование и управление при помощи ЭВМ.
Гибкие производственные системы завершают процесс автоматизации промышленных предприятий, начавшийся в 50-х годах. Сначала появились станки с числовым управлением, автоматически выполняющие различные операции в соответствии с закодированными командами на перфоленте. Затем стали привычными частично компьютеризованные системы проектирования и производственные системы, в которых чертежные доски заменены электронно-лучевыми трубками, а перфоленты - ЭВМ.
Новые гибкие заводы-роботы объединяют все эти элементы. Они состоят из управляемых ЭВМ, центров механообработки, с большой скоростью обрабатывающих сложные детали; роботов, переносящих их и закрепляющих на станках; тележек с дистанционным управлением, на которых доставляются материалы. Все компоненты связаны единой системой электронного управления для каждого этапа производственного процесса, вплоть до автоматической замены отработавших или сломанных инструментов (сверло, фреза, резец...).
По сравнению с теми станочными комплексами, которые они заменяют, гибкие системы подчас кажутся дорогими. Такая система, включающая аппаратуру управления, пять или более центров механообработки и необходимые манипуляторы, может обойтись в несколько миллионов рублей. Даже сравнительно простая система, созданная на базе одного станка скажем, управляемый ЭВМ токарный центр, - стоит несколько тысяч, в то время как обычный станок с цифровым управлением, выполняющий те же операции, стоит около тысячи рублей.
Но прямое сравнение - неудачный критерий для оценки той экономии, которую сулит гибкая автоматизация, даже если принять в расчет выгоды в плане производительности и использования мощностей, которые дает круглосуточная работа предприятия фактически безучастия людей.
Поскольку гибкую производственную систему можно "молниеносно" заново перепрограммировать на производство новых деталей и изделий, то одна система может заменить несколько обычных механических линий, давая большую экономию за счет меньших капиталовложений и производственных площадей.
Самый большой потенциал гибких систем заложен в их способности дешево изготавливать товары небольшими партиями. Автоматические станочные линии при жесткой автоматизации почти не обладают такой гибкостью. Но значение массового производства в настоящее время уменьшается по сравнению с производством партиями от нескольких тысяч экземпляров до одного. Сейчас 75 процентов всех механически обрабатываемых деталей изготавливаются партиями по 50 штук или меньше.
Многие виды сборной продукции - от самолетов и тракторов до крупных ЭВМ - выпускаются такими партиями. В прошлом для производства изделий партиями были нужны станки, рассчитанные лишь на одну функцию. Эти станки в случае перехода к выпуску нового изделия приходилось либо реконструировать, либо заменять. Гибкие системы обеспечивают неслыханную прежде возможность разнообразить продукцию. Можно на одной и той же линии изготавливать различные изделия, правда, из одного "семейства". Так, семейство автомобилей "Жигули" вполне может служить примером массового изделия индивидуального заказа. Представьте себе, что наша гибкая система способна выпустить любую модель от ВАЗ-2101 до ВАЗ-2107. При этом на конвейере друг за другом одновременно движутся к "логическому завершению" совершенно разные модели. Тут и пикап малинового цвета, и "Лада" с правосторонним рулевым колесом на экспорт, и утепленный вариант "Нивы" для районов Севера. Вот принят новый заказ: "первая модель с третьим двигателем". Дается команда программирующему компьютеру, конструктивные особенности модели вводятся в память роботов, складской системы, обрабатывающих и сборочных центров - и автомобиль включается в поток технологической реки так же органично, как маленький ручей впадает в большую реку.
Проходит одна-две "смены" - и готовый индивидуальный заказ предоставляется потребителю.
При негибкой автоматизации наибольшая экономия достигается только при предельной массовости продукции. Использование гибких систем делает возможной аналогичную экономию при самых различных масштабах производства. Они могут производить небольшие партии или даже единичные экземпляры с такой же эффективностью, как производственная линия, предназначаемая для изготовления миллионов одинаковых изделий. Энтузиасты называют эту способность масштабной экономией.
Подобные эффекты существенно изменяют принципы, на которых зиждятся традиционные производственные методы. Нет необходимости в длительной подготовке и наладке производства благодаря беспрецедентной "компьютерной" точности, которую такие системы обеспечивают сразу на каждом этапе производственного процесса - от механической обработки до технического контроля. Появляется гораздо больше возможностей строить новые предприятия: гибкие системы избавляют от "тирании" крупных вложений, допуская строительство небольших заводов, расположенных близко к местам сбыта продукции.
БРИГАДНЫЙ ПОДРЯД РОБОТИЗАЦИИ
Идея группового использования роботов и станков с ЧПУ в едином комплексе принадлежит как бы самим роботам. Начиная с самых первых шагов роботизации выяснилось, что замену производственного рабочего роботом в соотношении "один к одному" вряд ли можно оправдать. Роботу такая замена, грубо говоря, "невыгодна", он не сможет "развернуться во всем блеске" на столь узком "пятачке". Идеально, когда удается поручить роботу обслуживание сразу нескольких станков, агрегатов или прессов, претворив разрозненное оборудование в полностью автоматизированный комплекс, работающий по единой, общей программе. Именно в таких технологических комплексах, как показала практика, один промышленный робот высвобождает в среднем двух-трех рабочих, в два-четыре раза повышает производительность, приблизительно вдвое увеличивает использование оборудования, повышает ритмичность и общую культуру производства.
Подобный робототехнологический комплекс - это и есть своеобразный кирпич, или, точнее, пробный камень на стройплощадке полностью роботизированных цехов или даже заводов. Это не просто дальнейшая автоматизация производства, это качественно новый шаг в развитии промышленности. "Ставка на полностью роботизированные технологии оправдана не только как отдаленная перспектива, но и с позиций сегодняшнего дня.
Именно этот подход должен быть положен в основу нашей стратегии и тактики в области робототехники", - считает профессор Г. Юревич. Это и решение вопроса о том, как и где наиболее эффективно можно использовать роботы и манипуляторы.
Групповое использование роботов дает определенные выгоды с точки зрения их технического обслуживания, подготовки операторов, обеспечения запасными частями.
Применение бригады роботов дает возможность поднять на высшую ступень дело управления, применить комплексное управление от ЭВМ. Стоимость мини-ЭВМ в пересчете на один робот оказывается не столь уж велика.
В перспективе наиболее выгодными могут стать бригады из роботов, где один очувствленный, или интеллектуальный, будет обслуживать несколько простых, более "глупых" собратьев. Но сначала нужно научить роботов общаться друг с другом.
Групповое использование роботов - своеобразный бригадный подряд роботизации - требует решения таких новых и принципиальных вопросов, как организация идеального их взаимодействия, своеобразная социализация поведения, разработка кибернетической "этики" роботов. Вот где опять интенсивно заработал механизм самопознания человека и человечества!
Конечно, фантасты уже заложили несколько весомых кирпичей в фундамент этики роботов, однако проблемы, которые ставит перед нами жизнь, почти всегда оказываются сложнее любой измысленной ситуации. Жизнь фантастичнее фантастики.
Специфика группового управления роботами состоит, говоря профессиональным языком, "в наличии разнообразных пространственных и временных ограничений на движение отдельных манипуляторов". Пространственных - это значит, что рабочие зоны отдельных рук роботов могут пересекаться. Временных - это значит, что движения рук не произвольны, а упорядочены во времени.
Самым тривиальным вариантом группового управления является управление автономно работающими манипуляторами. Здесь каждый робот совершает не связанные ни в пространстве, ни во времени с другими манипуляторами действия. Задача группового управления здесь сводится к известной проблеме распределения вычислительной мощности управляющего компьютера между несколькими пользователями.
Более сложным вариантом группового управления является наложение только временных взаимных связей на действие манипулятора. В простейших случаях эти связи сводятся к установлению определенной последовательности выполнения каждым манипулятором своей индивидуальной операции. Более сложным случаем является синхронизированная параллельная работа манипуляторов.
Следующим этапом на пути усложнения задачи группового управления является совместное выполнение манипуляторами общей работы, требующей взаимной координации их движений в пространстве общей рабочей зоны (например, сборка одного узла двумя манипуляторами). Возможны разные режимы организации такой совместной работы манипуляторов, имеющие глубокие аналогии с человеческим общением: квазиавтономное управление, иерархическое подчинение и равноправное взаимодействие.
В квазиавтономном режиме общее задание, поручаемое бригаде роботов, стараются разбить на такие операции, каждая из которых могла бы выполняться однщи из манипуляторов при учете пространственных и временных ограничений, обеспечивающих взаимную "развязку" движений отдельных роботов.
Другое дело - режим управления с иерархическим подчинением роботов друг другу. Один из роботов является основным - своеобразный бригадир, - а другой работает, оперативно согласовывая с ним все свои движения во времени и пространстве.
Самым высокоорганизованным режимом совместной работы роботов является режим равноправного взаимодействия. Такой режим предполагает оперативный учет дыжений других манипуляторов при управлении каждым в отдельности. Согласование работы отдельных ма нипуляторов и роботов обеспечивается как собственными мини-компьютерами роботов, так и центральным компьютером. Возможны три варианта организации управления.
Децентрализованное групповое управление, когда индивидуальные микрокомпьютеры роботов перекрестно связаны друг с другом.
Централизованное управление группой роботов от одного компьютера.
Комбинированное управление, являющееся обобщением двух первых вариантов.
Впрочем, все эти варианты могут быть программно реализованы в одной ЭВМ при условии достаточной ее вычислительной мощности.
Наиболее гибкой и надежной является комбинированная система управления, включающая в себя центральный компьютер и местные управляющие мини-ЭВМ, связанные с центром и между собой. Централизованное управление менее надежно: сломался главный компьютер, и вся система остановилась. Децентрализованное управление свободно от этого недостатка: выход из строя одного компьютера вызывает лишь отключение одного из роботов, остальные, если могут, продолжают работу. Однако в этом случае сложнее изменять алгоритм взаимодействия роботов, так как необходимо изменять структуру имеющихся связей между отдельными управляющими компьютерами роботов.
В идеале весь робототехнический участок, роботизированный цех и целый завод тоже превратятся в единый организм - настолько слаженный и гармоничный, что мы без натяжки могли бы присвоить этому заводу имя "робот". Нужно сказать, что, хотя идеал такого завода еще только брезжит на горизонте промышленного производства, отдельные лучи восходящего светила роботизации уже пробиваются сквозь тучи противоречивых идей и концепций.
Рассмотрим идею завода-робота японской фирмы "Хиточи ЛТД", уже опробованную на цехе механической обработки валов для мощных экскаваторов. Названа эта концепция "интегрированной производственной системой" (здесь английское слово "integrate" обозначает целостное неразрывное единство множественных элементов).
Основа состоит в объединении всего производственного автоматического оборудования в единую эффективно функционирующую систему посредством иерархической системы управления, реализованной с помощью целой сети современных микро-, мини-, средних и больших компьютеров. Эта система ЭВМ позволяет обеспечить организационно-хозяйственное и технологические управление на основе гибкой интегрированной программы, учитывающей состояние процесса производства.
Такой завод-робот как гигантский айсберг. Его видимая часть - это цех механической обработки валов.
Цех, как и любая подобная система, строится, как из кубиков, из набора фундаментальных элементов. Прежде всего он содержит формообразующие элементы технологии. Это разнообразные станки с ЧПУ, обрабатывающие центры и другое подобное оборудование, которое занято созданием изделий; условное название их функции - "изменение формы". Следующий кирпичик - это транспортные средства, занятые "изменением места", здесь разнообразные конвейеры, электрокары, краны-штабелеры. Кроме изменения места, необходимо осуществлять "изменение позиции". Это сфера эффективного приложения манипуляторов всех видов и поколений, они осуществляют операции переноса, изменения положения, компоновки и сборки. И наконец, то, что формально называется "изменением времени". Сюда относятся разнообразные средства хранения, начиная от питателей, стеллажей и поддонов и кончая автоматизированными многоярусными складами заготовок и готовой продукции.
Есть еще хитрая иерархия электронных средств управления. Каждая единица производственного оборудования - будь то станок, робот или производственная тележка - имеет свой мозг или, на худой конец, мозжечок, а именно: микропроцессор или микрокомпьютер.
Эти "мозги" соединены с помощью специальных каналов передачи информации с более мощными мини-компьютерами цехового уровня. Каждый такой мини-компьютер - "начальник цеха", обеспечивает работу целой группы оборудования, начиная от цехов механической обработки и сборки и кончая автоматизированными испытательными средствами и складами. Все мини-компьютеры объединены между собой быстродействующей связью, обеспечивающей оперативную передачу управляющих данных. И наконец, центральный компьютер, к которому подключены все мини-компьютеры цехов через так называемый "модем". Так и хочется назвать его центральной нервной системой этого организма.
Это то, что можно увидеть на таком заводе-роботе "невооруженным" взглядом. Невидимая же часть айсберга - это мощная, распределенная иерархическая система управления.
Первый уровень управления - управление роботами, станками и элементами транспортной системы. Система действует в полном соответствии с теми принципами, которые мы рассматривали в предыдущих главах этой книги. При выполнении элементарных операций эти единицы оборудования работают как бы квазинезависимо, псевдоавтономно.
Однако в тех случаях, когда они входят во взаимодействие друг с другом, такие вопросы решаются с помощью третейского суда - мини-компьютера более высокого - второго - уровня. Этот мини-компьютер участка или цеха осуществляет обработку всей информации по управлению вверенным ему производством. Он не только планирует работу цеха и контролирует ход выполнения планов, но и осуществляет групповое программно-распределительное (супервизорное) управление промышленными роботами и другим оборудованием.
Именно этот компьютер - "начальник цеха" - принимает от роботов рапорты о выполнении тех или иных производственных операций, сообщения о сбоях и поломках, молниеносно принимает решения, назначает следующую операцию по каждому оборудованию в соответствии с имеющимся планом, блокирует неисправные участки и станки, перераспределяет их функции между другими (соседними) роботами и станками, а в случае необходимости составляет и редактирует новые программы управления роботами и станками с ЧПУ.
Но и этот мощный набор функций бледнеет перед обязанностями центрального компьютера (третий уровень), который занимается вопросами организационнохозяйственного управления производством. Это он реализует выработку графиков загрузки оборудования.
"Мозг" этого "мозга" - математическое обеспечение системного управления - есть не что иное, как комплекс программ, что-то вроде операционной системы, реализующей управление всеми задачами системы: управление материально-производственными запасами (складами), управление станками, управление роботами, управление человеко-машинной связью, календарное, оперативное планирование и т. п. А над всем этим парит на недосягаемой высоте система автоматизации проектирования и технологической подготовки производства.
Это интеллект завода-робота, который "придумывает" новые виды продукции и "продумывает" технологию их изготовления. Такой завод можно смело назвать не только роботом, но и введенным нами для роботов-интеллектуалов именем - кибер.
Какие же черты именно кибера проглядывают в этом заводе-роботе? Эффекторами его являются отдельные станки, роботы и транспорт, воздействующие на производственную окружающую среду. Рецепторы же этого кибера - все те же роботы и станки, их собственные органы чувств, а также их сообщения об окончании отработки отдельных команд операций и целых программ, и наконец, сообщения о сбоях, выходе из строя, ошибках адресации и т. п. Проблема с поиском интеллектуального мозга этого кибера решается просто - им будет центральный компьютер, имеющий связь с оператором "директором" завода. Что касается целесообразного поведения этого кибера на рефлекторном, или же адаптивном, уровне, то степень его интеллектуальности как бы делит возможные конструкции таких заводов на три возрастающих уровня мощности интеллекта, которые удобно представить в виде привычного нам деления поколений.
Обучаемый принцип управления завода-робота первого поколения аналогичен принципу обучения и управления простого робота первого поколения. При переходе к выпуску новых видов продукции квалифицированные операторы осуществляют индивидуальное программирование роботов, станков с ЧПУ, транспорта, склада и т. д.
Управление с обратной связью завода-робота второго поколения обеспечивает не только оперативное реагирование с перестройкой технологического цикла при всевозможных сбоях и поломках, но и централизованное перепрограммирование роботов, станков и прочих элементов технологии с помощью перераспределения заранее заданных и хранящихся в компьютерной памяти программ. Это своеобразный аналог принципа "ситуация реакция". Разумеется, при переходе к совершенно новым изделиям нужно добавлять недостающие программы, то есть расширять набор классов ситуаций.
Адаптивное интеллектуальное управление заводомроботом третьего поколения обеспечивает, кроме всего вышеперечисленного, автоматический переход к выпуску новой продукции. Он осуществляется путем выдачи задания подсистеме проектирования и технологической подготовки производства. Она, в свою очередь, не только проектирует новое изделие и технологию его изготовления, но и создает программы непосредственного управления всеми производственными элементами: роботами, станками, транспортными системами, системами изготовления и замены инструментов, автоматическими хранилищами и т. д. и т. п.
СЕГОДНЯШНИЕ "ЗАВОДЫ БУДУЩЕГО"
"Поколения поколениями, - скажет вдумчивый читатель, - но хорошо бы увидеть хотя бы одну работающую систему, так сказать, ощутить идею в натуре".
Рассмотрим примеры уже работающих систем, подобных или приближающихся к концептуальной схеме завода будущего.
Начнем с прообраза такого робота - обрабатывающего центра. Идея его зиждется на принципе "все делается в одном месте". Обычно процесс производства средней детали состоит из нескольких основных формообразующих операций: сверлильной, токарной, фрезерной, шлифовальной и т. п., и обычная схема изготовления такой детали следующая. Берется четыре станка, каждый из которых выполняет одну какую-либо операцию. Установим эти станки в мало-мальски типовой последовательности. Поставим роботы-манипуляторы, накопители и т. и. - и участок готов. Можно пойти и другим путем. Создать универсальный станок, который об12 В. Бусленко jy ладает целым набором инструментов: несколько десятков сверл и фрез, шлифовальных дисков и т. п. Станок снабжен специальным поворотным столом, жестко закрепляющим деталь, вращающим и подающим ее в разнообразных направлениях. На таком обрабатывающем центре можно одновременно делать несколько операций, например сверлить и фрезеровать. Обрабатывающий центр - прямой потомок станков с ЧПУ - следующее поколение станочного парка.
Если поставить несколько станков типа "обрабатывающий центр", соединить их манипуляторами и транспортной системой, получим робототехнический участок.
Для адекватного управления им нужна современная мини-ЭВМ.
Рассмотрим, например, систему ROTA - FS-200, созданную на станкостроительном комбинате имени 7 Октября в Берлине. В ней магазин накопитель деталей выполнен в виде двух стеллажей, между которыми движется робот-загрузчик. Все восемь станков системы работают согласованно, подчиняясь командам единого вычислительного центра. Каждый станок, кроме того, снабжен собственным устройством автономного управления и роботом-загрузчиком. Этот робот подает заготовки из промежуточных магазинов и возвращает в них обработанные детали, меняет инструмент и элементы оснастки.
Промежуточные магазины играют роль своеобразных контейнеров, в которых детали и инструмент циркулируют по транспортной сети системы, они перемещаются с помощью специального подъемного механизма. А конечной станцией сети является центральный накопитель, устроенный также в виде двух стеллажей, между которыми движется штабелер-погрузчик. Контроль за работой всей системы ведется с центрального пульта управления.
По сравнению с обычным станочным парком такие автоматизированные комплексы позволяют сократить численность обслуживающего персонала на 70 процентов, вдвое уменьшить производственные площади и повысить производительность труда на 300 процентов.
В Болгарии разработан проект автоматизированного производства деталей типа тел вращения. Составной единицей производства является модуль МС-РСД, демонстрировавшийся в действии на выставке в Москва "Болгария - 30 лет по пути социализма". Модуль МС-РСД включает в себя токарный станок модели СЕ062 "Perun" с ЧПУ и автоматической сменой режущего инструмента, манипулятор, специальную тару, несущую партию заранее ориентированных деталей и загрузочную станцию. Манипулятор выполняет загрузочно-разгрузочные операции, имеет грузоподъемность 80 килограммов и перемещается от загрузочной станции к шпинделю станка. Он состоит из салазок, перемещающихся посредством гидромотора параллельно оси шпинделя станка, из загружающих и разгружающих рук, приводимых в движение гидроцилиндрами. Управление осуществляется малой ЭВМ, ИЗОТ-0310.
Болгарскими специалистами разработано также автоматизированное производство для сложнейших корпусных деталей, состоящее из сверлильно-фрезерно-расточных обрабатывающих центров. Особенностью производства является отсутствие склада. Подлежащие обработке заготовки с помощью напольной каретки, перемещающейся по проложенным вдоль ряда станков направляющим рельсам, сразу же поступают в позиции ожидания соответствующих станков.
Внедрение системы "Sistem-2790" на одном из машиностроительных заводов Болгарии позволило при том же количестве рабочих увеличить объем выполненных работ на 50 процентов и сократить продолжительность их выполнения более чем в 1,5 раза. Другой роботизированный участок, ROTA-200, предназначен для централизованного изготовления зубчатых колес с наружным диаметром 60-200 миллиметров партиями по 30- 40 штук. Производительность участка - 200 тысяч деталей в год. Он состоит из двух подсистем: токарной обработки, шлифования баз и протягивания внутреннего профиля, а также обработки зубчатого венца. Восемь станков участка расположены по обе стороны от транспортной складской системы, которую обслуживает штабелер, управляемый от ЭВМ или с пульта. Детали транспортируются по участку в магазинах емкостью по 24 или 48 штук в зависимости от размеров.
Заготовки вручную устанавливаются в специальные патроны и ориентируются по предварительно просверленным отверстиям. Данные о заполненных магазинах вводятся в ЭВМ, после чего штабелер устанавливает их в одну из ячеек в начале транспортной складской системы. Для хранения магазинов с заготовками и обработанными деталями в начале и в конце системы предусмотрены специальные секции по 12 магазинов в два этажа. Работу участка планирует ЭВМ типа РЗОО, которая каждые 7-10 дней рассчитывает предварительную программу работы участка. Непосредственно управляет работой участка малая ЭВМ типа KRS-4100.
В нашей стране наряду с аналогичными разработками осуществляются проекты и более крупных масшта бов, где роботы активнее участвуют в самом процессе производства, осуществляя не только транспортировку, но и сборку и даже контроль изделий. География их весьма обширна, а объем грандиозен. Петрозаводск и Орел, Таллин и Тарту, Смоленск и Тольятти...
Около двухсот автоматических манипуляторов занимаются сборкой часов в объединении "Петродворцовый часовой завод". Это сообщество роботов, создатели которого были удостоены Государственной премии СССР, освободило от монотонной работы 500 человек. На этом предприятии сборку точнейших механизмов для всей годовой программы - а это около четырех миллионов штук наручных часов - взяли на себя автоматические манипуляторы. В результате производительность труди увеличилась в шесть раз, в шесть раз возрос и объем продукции, отмеченной государственным Знаком качества. В корне изменился и характер труда. В сборочном цехе этого завода вы не увидите традиционных конвейеров с рядами склонившихся над ними работниц. Главной фигурой в нем стали наладчики и операторы высокой квалификации, обеспечивающие бесперебойную работу оборудования.
Приборостроение является еще одной отраслью, где комплексная автоматизация привела к созданию роботов-цехов и роботов-участков. Приборостроение, кстати, было первой отраслью, где роботехнические комплексы встретили буквально с распростертыми объятиями.
Ибо никакая другая техника не могла превратить поточные линии в экономичные, быстропереналаживаемые автоматические производства. Приборостроение отличает огромная номенклатура выпускаемых изделий десятки тысяч наименований, - а также большой удельный вес сборки, на которую приходится более половины всех трудоемких операций.
Дольше всех не поддавалась автоматизации транспортировка деталей от агрегата к агрегату, а также их загрузка и выгрузка, поскольку наибольшую сложность при этом представляла "стыковка" роботов с уже установленными в цехах поточными линиями. Тогда-то у проектировщиков и родилась мысль о необходимости создавать такие комплексы, для которых технологическое оборудование проектировалось бы совместно с роботами.
Первой ласточкой среди предприятий подобного рода стал освоенный в орловском производственном объединении "Промприбор" комплекс контроля терморегуляторов для домашних холодильников.
Изготовление деталей терморегулятора, их сборка, настройка, а также пайка, мойка, вакуумная сушка, контроль герметичности, сварка и другие операции, вплоть до окончательной сборки, полностью автоматизированы. Все этапы технологии, объединенные транспортной системой, управлялись комплексом на базе машины М-6000. Загрузку и выгрузку оборудования вели 34 промышленных робота ПР18-2, имеющие четыре степени подвижности и высокую точность позиционирования (+0,1 мм).
Рассчитанный на выпуск трех миллионов приборов в год, этот комплекс высвободил 400 человек и дал годовой экономический эффект 800 тысяч рублей.
Достижение орловских приборостроителей вдохновило их эстонских коллег, которые в 1981 году разработали роботизированный комплекс для изготовления электроизмерительных приборов. За основу приняли робот ПР5-2 с пятью степенями подвижности. В 1981 году на таллинском ПО "Промприбор" внедрена линия сборки, на которой работают восемь роботов. Еще более массовое применение подобного оборудования началось в 1983 году, когда вошел в строй цех по выпуску индикаторов уровня звукозаписи. В его составе действует 20 транспортных модулей и 40 роботов. Это высвободило 700 человек и дает экономический эффект в 23 миллиона рублей.
Создавая переналаживаемые многономенклатурные производства, приборостроители разрабатывают роботизированный участок по изготовлению шестерен для электрических исполнительных механизмов. Участок, состоящий из шести токарных станков с ЧПУ, вертикально-фрезерного станка, пяти зубодолбежиых полуавтоматов, восьми промышленных роботов, двенадцати подъемников-накопителей, вступит в эксплуатацию в 1985 году. Он будет обрабатывать шестерни семи различных диаметров.
Специально для переналаживаемого комплекса приборостроители разрабатывают новый промышленный робот с электроприводом. У него пять степеней подвижности, повышенная точность позиционирования (+0,5 мм), высокие скорости перемещения (до 1 м/с), а также небольшие габариты и вес. Характеристики улучшены благодаря использованию малоинерционных двигателей постоянного тока, волновых редукторов, кодовых фотоэлектрических датчиков. Проходящие сейчас испытания макетного образца робота показали, что его можно будет использовать для сварочных и окрасочных работ.
Сейчас в отрасли разрабатывается оборудование для переналаживаемых сборочных производств. В линии сборки термовентилей, внедренной на Тартуском приборостроительном заводе, уже успешно опробован несинхронный транспортер и обслуживающие его семь промышленных роботов, а также другое оборудование.
Одновременно прорабатывается вариант гибкой переналаживаемой сборочной системы сотового типа для сборки свыше тысячи модификаций манометров. Центральным узлом системы является многоэтажный поворотный магазин, в ячейках которого хранятся заготовки, оснастка, инструмент и готовые изделия. Передачу деталей от магазина к транспортным и технологическим модулям осуществляют промышленные роботы.
Подобная система позволяет лучше использовать объем производственных помещений, допускает она и частичную переналадку производства без полной его остановки.
В настоящее время в чекобсарском ПО "Промприбор" уже действует переналаживаемый робототехнический комплекс (РТК) горячей штамповки для деталей диаметром от 7 до 20 миллиметров. В смоленском ПО "Искра" внедрен РТК трафаретной печати. Во всех случаях переналадка на новый тип заготовки занимает не более одного часа.
В соответствии с принятой в отрасли комплексной программой предусмотрено в одиннадцатой пятилетке создать и внедрить в производство свыше 700 робототехнических комплексов, в которых будут работать около трех тысяч промышленных роботов.
Всего же в отрасли их должно быть внедрено 30 тысяч.
САМОВОСПРОИЗВОДСТВО?!
"Самовоспроизводство" - довольно претенциозное слово, особенно в книге о роботах; и дотошный читатель, видимо, уже насторожился, вытащил из колчана пару стрел-аргументов, натянул лук остроумия и приготовился сражаться за тезис о том, что самовоспроизводство - функция только живой материи. Мы не будем вести спор на эту вечную кибернетическую тему. А просто поведем речь о заводе, на котором роботы делают роботов.
На заводе компании "Фанук", разместившемся в желтых зданиях в сосновом бору близ Фудзиямы, автоматические центры механической обработки и роботы по ночам, как правило, работают без присмотра. Только вспыхивают тусклые голубые сигнальные огоньки, когда автоматические тележки, словно призраки, двигаются в полумраке. Этот завод, один из двух, составляющих фудзиямский комплекс, изготавливает детали для роботов и станков (которые, однако, собираются вручную). За механической обработкой, происходящей на площади в 16 тысяч квадратных метров, наблюдает по ночам один-единственный оператор, следящий за работой машин на дисплее. Когда что-то выходит из строя, он может отключить данный участок, в то время как работа на остальных может продолжаться.
Некоторые специалисты считают фудзиямский комплекс фирмы "Фанук" лишь своего рода витриной. Общая стоимость этого завода составила примерно 32 миллиона долларов, включая стоимость 30 секций механической обработки, состоящих из станков с компьютерным управлением, обслуживаемых роботами, из манипуляторов, переносящих материалы, из мониторов и из программируемого контрольного устройства, координирующего весь процесс. "Фанук" подсчитала, что ей, вероятно, потребовалось бы в десять раз больше капиталовложений, чтобы иметь тот же выход продукции при обычном оборудовании. Кроме того, потребовалось бы в десять раз больше работников. Сейчас их около ста человек. На этом заводе один работник наблюдает за десятью секциями механической обработки; остальные заняты техническим уходом и сборкой. В целом завод примерно в пять раз производительнее, чем такой же завод при обычном оборудовании.
На другой стороне улицы помещаются 60 секций механической обработки. Там же действует 101 робот.
В большом двухэтажном здании ведется автоматическая обработка и сборка. Общий объем продукции - 10 тысяч электромоторов в месяц. Люди здесь работают лишь днем, выполняя обязанности по техническому уходу. Роботы работают всю ночь в тишине, нарушаемой только "вздохами" гидравлических прессов и жужжанием автоматических тележек. На первом этаже этого завода расположены все секции механической обработки и 52 робота. Завод обрабатывает детали примерно 900 типов и размеров партиями от 20 до 1000 комплектов.
После механической обработки детали временно попадают на склад, откуда их потом автоматически извлекают для сборки, производимой на втором этаже.
Фирма "Ямадзаки мэшинери" имеет основанный на использовании роботов завод близ Нагой, изготавливающий детали токарных станков с машинным цифровым управлением, и центры механообработки; последние объединяют несколько металлообрабатывающих станков и автоматические приспособления для замены инструмента. В дневное время на этом заводе занято двенадцать рабочих. По ночам машины продолжают работать под наблюдением лишь одного дежурного оператора.
Обычная система механической обработки аналогичной производственной мощности, по данным этой компании, потребует двести пятнадцать работников и почти в четыре раза больше машин, и, кроме того, для изготовления деталей, которые новый завод выпускает за три дня, потребовалось бы три месяца.
Еще один автоматизированный завод фирмы "Ямадзаки" будет введен в строй в близком будущем. Все шестьдесят пять станков нового завода с машинным управлением и тридцать четыре робота будут связаны между собой с помощью волоконно-оптического кабеля.
Конструкторское бюро, тоже с машинным управлением, находится в главной конторе. Оттуда можно дать заводу команду изготовить требуемые детали, инструмент, рабочие приспособления, закладывая в память ЭВМ названия различных образцов. Требуется лишь нажать несколько кнопок, чтобы пустить всю систему.
На заводе будет занято двести пятнадцать человек вспомогательного персонала. Для выпуска планируемого объема продукции на обычном заводе потребовалось бы две с половиной тысячи человек.
В Западной Европе, которая сильно отстает не только от лидера роботизации Японии, но и от СССР, находящегося на втором месте в мире, также ведутся разработки роботизированных цехов.
Первая такая система вступила в строй в прошлом году в Крюкерке (Англия). Она связывает совокупность механообрабатывающих станков в одну полностью интегрированную производственную ячейку и включает в себя системы с ЧПУ для смены инструментов обработки, управления процессом в реальном масштабе времени и автоматического передвижения обрабатываемых изделий по цеху.
В Колчестере (графство Эссекс) открылся первый в Англии полностью автоматизированный завод, где роботы и ЭВМ делают, по существу, все. Персонал, который там занят, - это горсточка операторов, включающих оборудование и присматривающих, чтобы работа шла гладко.
Результат всего этого - сокращение затрат времени на обработку, уменьшение количества производственных запасов и, само собой разумеется, экономия трудовых затрат.
Завод в Эссексе производит разнообразные шпиндели, шестерни и колеса. Вдоль ленты непрерывного конвейера, по которому перемещаются обрабатываемые заготовки, выстроилась цепочка автоматических станков.
Они загружаются роботами, управляемыми с помощью датчиков, ЭВМ и экранов видеодисплеев.
Такая робототехническая система идеальна для мелкосерийного производства: теперь на складе готовой продукции можно иметь ограниченное число деталей, которые уходят оттуда в течение непродолжительного времени. Упор здесь делается, как и во всех гибких системах, на способность быстро реагировать на изменения конъюнктуры путем изменения количества и ассортимента продукции.
Завод в Колчестере станет, с одной стороны, выпускать товарную продукцию, а с другой - служить в качестве показательной гибкой производственной системы для других фирм.
Несколько машиностроительных предприятий, главным образом аэрокосмической и моторостроительной промышленности, уже ввели в строй свои собственные автоматизированные производства. Однако в отличие ог колчестерского предприятия эти заводы не являются полностью автоматизированными и гибкими производственными системами в подлинном смысле слова.
Фирма "Роллс-Ройс" переоборудует бывшее трамвайное депо в Дерби в автоматический завод по изготовлению турбинных лопаток для двигателей самолета "Боинг-757". Эти двигатели имеют свыше двухсот разновидностей лопаток для турбин. Из-за того, что проводится двухгодичная программа совершенствования двигателей, затраты времени на освоение новой продукции значительны и дорогостоящи. Роботы уменьшат их вдвое.
На заводе этой фирмы работает семь ячеек с роботами. Они соединены между собой конвейером. Там осуществляется пятнадцать этапов обработки турбинных лопаток. Изготовление каждой лопатки обычно занимало шесть минут. Теперь же это время сократилось до сорока пяти секунд, и шесть человек выполняют работу тридцати. К настоящему времени компания повысила выработку на одного работающего на 28 процентов и к 1984 году ставит своей целью ее повышение на 40 процентов.
Аэрокосмичеекая фирма "Нормалэйр-Гэррит" решила строить новый автоматизированный завод в Крюкерне. Там роботы и управляемые микропроцессорами тележки будут приспособлены для транспортировки заготовок по технологическим маршрутам между крупными станками. Отливки и необработанные заготовки заходят в систему с одного конца и выходят оттуда в виде готовой продукции.
По оценке фирмы, выработка, то есть объем произведенной продукции, на одного работающего, которая раньше была обычно на уровне 67 тысяч фунтов стерлингов в год, благодаря автоматизации повысилась до 210 тысяч фунтов стерлингов. Длительность производственного цикла сократилась с четырех месяцев до двух недель, а оборачиваемость складских запасов стала быстрее примерно в шесть раз. Фирма затратила на новый завод миллион фунтов стерлингов, но зато теперь имеет там только двух или трех операторов в каждой смене.
Следующая гибкая система, которая войдет в строй в Великобритании, это СКЭМП. Она начнет работать в начале этого года.
СКЭМП - автоматический токарный агрегат для производства деталей новой модели токарного станка.
Он состоит из девяти машин: двух автокаров, двух обрабатывающих центров для токарной обработки с ЧПУ, зубострогального, зубофрезерного, шлифовального станков, а также станков для развертки отверстий и доводки зубьев шестерен. Заготовки циркулируют по системе, п"- тешествуя на конвейерных тележках. Их загрузку и выгрузку возле каждого пункта обработки будут производить роботы системы "Сиробот".
Каждый обрабатывающий центр обслуживается парой особых магазинов для конвейерных поддонов, которые загружаются с помощью одной-единственпой транспортной тележки, управляемой по высокочастотному кабелю (он проложен под полом). С помощью гележки осуществляется также сообщение с пунктом загрузки-выгрузки.
Компания "Эндерсон Стоэфклайд" будет использовать эту систему для изготовления коробок скоростей и других узлов выпускаемых ею разнообразных угольных комбайнов. Будет изготовляться одновременно четырнадцать различных деталей. Система должна полностью включиться в работу к концу 1984 года.
Возможность увидеть завод-робот в натуре за работой предоставили корреспонденту "Известий" К. Рашидову руководители японской компании "Фудзицу, Фанак", пригласив посетить ее завод "Хино". Вот что он пишет:
"Роботы производят компьютеры и массу самых различных деталей машин, из которых собирают затем себе подобных роботов. Правда, еще не без помощи людей. Но уже через два-три года, по словам директора завода, рабочие уйдут и из сборочного цеха. А пока их здесь шестьдесят человек. Они монтируют роботов. И все же вернее будет сказать - помогают делать это сложнейшему электронному комплексу, состоящему из обладающих уникальной памятью и другими редкими способностями компьютеров и расторопных роботов, захватывающие устройства которых удивительно напоминает человеческие руки.
Механическая рука предельно точна - расхождение равняется здесь плюс-минус 0,05 миллиметра. Но и эгу символическую ошибку робот исправляет в момент захвата деталей. Поражают также плавность и особая мягкость в движениях, которые, казалось бы, дол/кны быть чужды "железной лапе". Может быть, поэтому каждый из металлических гигантов, кроме общего официального названия "Фанак", носит и ласкательное собственное имя. В одном из цехов завода "Хино", выпускающего специальные моторы - механические "сердца" роботов, - мы увидели "хризантему", "лилию", "азалию" и других роботов, выстроившихся в два ряда вдоль обслуживаемых ими станков.
Рядом аккуратными столбиками разложены детали.
По одну сторону - заготовки, по другую - готовая продукция. Подхожу к роботу, на "груди" которого иероглифами и латинскими буквами выведено "Сумирэ", что в переводе означает "фиалка".
Безусловно, и прямоугольное вращающееся "туловище", установленное на вертикальной винтообразной "ноге", и выступающая из него механическая "рука" ничем не напоминают известный цветок. Разве только своей бордово-желто-белой окраской. Но, понаблюдав за роботом даже несколько минут, невольно проникаешься симпатией к этому неутомимому труженику. И собственное имя этой "фиалки Фудзицу" уже не кажется столь неуместным, как прежде. А работает "фиалка" действительно виртуозно, чрезвычайно ловко выполняя не только обязанности фрезеровщика, но и любые трудоемкие функции человека на данном участке.
И все же робот лишь копирует движения рабочего и не в состоянии что-либо "добавить" в процесс от себя.
Некоторое исключение составляет, пожалуй, лишь способность при любом варианте программы моментально выключить станок и свой "мозг" - компьютер - при аварийных ситуациях.
"В основном на это и делается расчет, когда ночью роботы остаются полными хозяевами в цехах", - подчеркнул X. Ситида.
Известный у себя в стране и за рубежом специалист по роботизации производства, он скорее буднично, чем увлеченно, рассказывает о том, что из всех ста работающих здесь человек только один несет ночное дежурство на пульте управления. Остальные трудятся в одну смену с коротким перерывом на обед.
- А вдруг, - спрашиваем, - ночью произойдет какое-нибудь ЧП? Есть ли на такой случай дублер у дежурного, чтобы срочно приехать на завод?
Ответ однозначен: такого человека нет. Потому что в этом нет необходимости. Всем, что нужно для работы, роботы снабжаются с вечера, а в случае какой-либо неисправности компьютер сразу же принимает нужные меры по отключению и изоляции поврежденного участка. За все время работы завода, добавляет наш собеседник, то есть ровно за год, лишь однажды был зафиксирован ночной "прогул" одного из роботов, остановившегося из-за нарушения режима работы.
- А если сильное землетрясение в ночное время?
И, как обычно, сопровождаемое оСтр. 1 : Стр. 2 : Стр. 3 : Страница 4 : Стр. 5 : Стр. 6 : Стр. 7 : Стр. 8 : Стр. 9 :
|