Наш коллега - робот

25.12.2010, 10:50
Автор:
  • Владимир Николаевич Бусленко

  • Издатель: Серия "Эврика"
    Размер: 400k.
    Рассказ: Фантастика

    Стр. 1 : Страница 2 : Стр. 3 : Стр. 4 : Стр. 5 : Стр. 6 : Стр. 7 : Стр. 8 : Стр. 9 :

    де его удобно взять левым манипулятором. Он опускается, захватывает инструмент, и, пока магазин движется, поднимается вверх правый манипулятор (так и хочется сказать рука), он в это время вынимает инструмент из шпинделя станка, чтобы освободить место для нового. Теперь руки меняются местами. Одна с новым инструментом вставляет его в шпиндель, другая со старым, снятым, ставит его в магазин. Станок готов к новой операции.
    Чтобы деталь можно было обрабатывать со всех сторон, станок снабжен специальным поворотным столом, на котором закрепляется обрабатываемая деталь. Точность ее перемещения контролируется специальной следящей системой.
    Манипуляторы обрабатывающего центра, используемые для смены инструмента, - ближайшие родственники современных промышленных роботов. Эти автоматические транспортирующие устройства используются на различных вспомогательных операциях: загружают детали на станок, закрепляют в шпинделе, снимают обработанные детали и т. п. Некоторые фирмы стали специализироваться на производстве подобных транспортирующих устройств все более и более универсального назначения. Наконец, выпустив очередной многоцелевой автоматический манипулятор, предприниматели снабдили его броским рекламным названием - "промышленный робот". Он и стал первым образцом робота, применяемого в промышленности.
    Вот где пересеклись две параллельные прямые: копирующие человека автоматы, андроиды и киберы встретились с мощным потоком автоматизации промышленного производства. Это случилось тогда, когда очередная ступень автоматизации персонифицировалась в копировании движений человека, обслуживающего станок.
    Итак, матерью современного промышленного робота является представительница древнего рода, принцесса - андроид, его отец - простой работяга, токарный станок.
    ЮНОСТЬ
    Человечество XX века "старательно" играло в свои игрушки антропоморфные механизмы; фантасты проигрывали разнообразные "конфликтные" ситуации, мир взрослел, и роботы выходили со страниц книг на производственную сцену. Фантастика, экзотика, реальность - вот путь, который прошли роботы всего за сорок лет.
    Во второй половине 50-х годов советская школа теории механизмов и машин начала заниматься проблемами роботов и манипуляторов. В марте 1958 года на Втором всесоюзном совещании по основным проблемам теории механизмов и машин выдающийся советский ученый И. Артоболевский поставил проблему стыковки науки о механизмах и кибернетики. Он указал- на работы по созданию биоэлектрической системы управления механической рукой, которые были выполнены коллективом ученых Института машиноведения.
    В июле 1965 года в Москве был созван первый симпозиум по теории и принципам устройства манипуляторов. Симпозиум открывался докладом А. Кобринского и Ю. Степанова, освещающим основные проблемы теории манипуляторов.
    В 60-х годах практические модели подобных устройств разрабатывали многие специалисты нашей страны. В 1968 году в Ленинградском политехническом институте имени М. И. Калинина при участии ученых Ленинградского института авиационного приборостроения и Института океанологии АН СССР была создана модель робота для проверки возможностей ее использования при глубоководных работах. В это же время были начаты работы по созданию промышленных роботов с так называемым числовым программным управлением (ЧПУ). В 1971 году уже функционировали первые опытные образцы: универсальный манипулятор УМ-1, созданный под руководством П. Белянина и Б. Родина, робот "Универсал-50" под руководством Б. Сурина, а также робот УПК-1 под руководством В. Аксенова.
    Манипулятор УМ-1 был первым отечественным роботом, применяемым на серийных предприятиях нашей страны. В 1972-1973 годах впервые в СССР было освоено серийное производство промышленных роботов УМ-1.
    Широкий размах приобрели исследования и разработки промышленных роботов за рубежом. В 50-х годах американский изобретатель Дж. К. Девол запатентовал принцип универсальной вспомогательной машины.
    В 1958 году ему удалось начать научно-конструкторские работы, а в 1962 году фирма "Юнимейшен" выпустила первые промышленные роботы модели "Юнимейт Марк II". Эта довольно громоздкая машина благодаря высокой надежности, неприхотливости и хорошим динамическим качествам ухитрилась не устареть до сих пор.
    Вот уже более двадцати лет роботы семейства "Юнимейт", не претерпев существенных изменений, выпускаются и используются в промышленности.
    Таким образом, на Западе первыми были признаны и нашли сбыт американские промышленные роботы "Юнимейт" и "Версатран", разраоотанные фирмами "Юнимейшн" и "Американ машин энд Фаундри". За ними рядами двинулись в производство когорты роботов:
    "Аутохэнд" и "Флексимен", "Праб", "Аутобот" и "Трансфербот", "Мобилити", "Трансива", "Минитрен" и т. д. и т. п. Предприниматели поняли, что использование робота сулит немалые прибыли. В одной из статей, посвященных появлению роботов на заводах США, в частности, говорилось: "В металлообрабатывающей промышленности появился новый тип производственного рабочего. Он не состоит в профсоюзе, не пьет кофе в обеденный перерыв, работает по двадцать четыре часа в сутки и не интересуется пособиями или пенсионной оплатой. Он осваивает новую работу за несколько минут и всегда выполняет ее хорошо. Он никогда не жалуется на жару, пыль и запахи и никогда не получает увечий на работе. Он - промышленный робот".
    В 1976-1982 годах в промышленность нашей страны было внедрено около 10 тысяч отечественных автоматических манипуляторов. По их количеству наша страна занимает сейчас второе место в мире после Японии.
    В текущем пятилетии народное хозяйство получит еще 40-45 тысяч промышленных роботов. Они дадут около 500 миллионов рублей экономии.
    Возникает вопрос: действительно ли промышленный робот должен быть похож на человека, в какой степени важно его "человекообразие"? Ответ на этот вопрос весьма прост: в той степени, в какой робот должен заменить человека на его рабочем месте.
    Человек создал вокруг себя целый мир, приспособленный к нашей собственной природной "конструкции": мебель, лестницы и двери в доме, инструменты и станки в цехе, индикаторы и ручки управления в автомобиле, метро и трамвае. Все, буквально все приспособлено "под человека". Машина, которая сможет постоянно действовать рядом с человеком (коллега-робот), использовать рассчитанные на человека вещи, должна, очевидно, походить на человека. Это и экономно (не нужно переделывать техносферу), и разумно. Таким образом, человекоподобный робот или антропоморфный механизм-манипулятор не фантастика, а насущная реальность. Вот почему, начиная со времени первых андроидов и до сего дня, происходит колоссальный процесс самопознания человека, моделирования функций живого. Человечество как бы действует по принципу: "Построим копию - мижет быть, поймем, как действует оригинал". Таким образом, основная проблема роботехники состоит в осознании основных механизмов движения, ощущения и мышления и их моделирования в поведении роботов.
    Роботы первого поколения моделируют двигательные функции человека и животного, они берут и кладут, поднимают и опускают, вынимают, встряхивают, кроме того, робот ходит, скачет, перелезает и марширует.
    Роботы второго поколения моделируют функции ощущения; они видят и слышат, обоняют, осязают и высматривают.
    Наконец, роботы третьего поколения моделируют функции мышления: узнают и вспоминают, соображают и пробуют, ошибаются и учатся на ошибках.
    Изучая и применяя различные поколения роботов, мы должны хорошо понимать, что сами роботы - это всего лишь часть единой системы - нашей технической цивилизации. Составляющие робота: манипуляторы, микрокомпьютеры, датчики и т. п. - производные этой единой системы. Рассматривать любой элемент этой совокупности отдельно, оторванно от всего целого - значит намеренно сузить поле нашего зрения, оставить за бортом все море фактов и сосредоточиться на той лужице, которая случайно образовалась на палубе нашего корабля. Поэтому, описывая эволюцию промышленных роботов, мы будем иногда отвлекаться от основной темы, чтобы не потерять этого цельного видения.
    РОБОТЫ ПЕРВОГО
    ПОКОЛЕНИЯ
    ОБУЧАЕМЫЕ
    МАНИПУЛЯТОРЫ
    ЖИЗНЬ - ЭТО ДВИЖЕНИЕ
    Роботы первого поколения с успехом воспроизводят двигательные функции человека. Они берут и кладут, поднимают и опускают, вынимают и вставляют, переворачивают и встряхивают, достают и опрокидывают.
    Все это разнообразие движений, умноженное на современный промышленный инструментарий, позволяет роботу не только перемещать детали и заготовки, но и красить, шлифовать, сваривать и резать, упаковывать и маркировать, сортировать и отбраковывать и даже стричь, рисовать, играть на пианино и резать по мрамору.
    Чудо человеческого движения: плавные па балерины, точные движения рук хирурга, творящие пассы скульптора, микроскопические движения ювелира... какая бездна тончайшей координации, какая свобода движения!
    Любое тело, находясь в свободном состоянии, имеет шесть "степеней свободы", оно может перемещаться вдоль трех координатных осей и вращаться вокруг них.
    Рука человека имеет 27 степеней свободы, из них 20 приходится на кисть руки и пальцы. Человеческое тело в целом имеет несколько сотен степеней свободы.
    Эта подвижность обеспечивается многочисленными мышцами: 52 пары мышц на руки, 62 пары на ноги, 112 мышц спины, 52 мышцы грудной клетки, 15 шейных мышц и т. д. Естественно, что моделирование движения такой сложной системы привело бы к механизмам чрезвычайной сложности, огромных размеров и слабой надежности в работе. Нужно ли такое богатство двигательной активности роботу?
    Разумеется, нет! Как раз важно обеспечить оптимальный минимум движений для выполнения поставленной задачи, не упустив при этом важных свойств необходимой универсальности робота. Поэтому современные механические руки имеют всего шесть-восемь степеней свободы.
    Пусть нам поручено создать манипулятор промышленного робота - аналог руки человека. Что нам понадобилось бы для этого, кроме необходимого упорства и терпения? Во-первых, наша механическая рука не будет висеть в воздухе, она должна к чему-то прикрепляться, необходимо основание, или тело робота. Затем нужна сама рука, то есть некоторый аналог костей скелета. Чтобы рука могла двигаться самостоятельно, поднимать тяжести и манипулировать ими, ей нужны мускулы. Все? Ничего не забыли? Нет, не все. Мы забыли самое главное, без чего рука безжизненно повиснет плетью или согнется в "три погибели". Это мозг, то, что управляет всем многообразием ее движений. Теперь все, можно приступать.
    Примерно так же, только гораздо квалифицированней, рассуждали первые роботостроители. Они без зазрения совести пользовались незапатентованными идеями природы, создавая конструкции "по своему образу и подобию".
    Каждый промышленный робот состоит из двух основных частей: манипулятора и программатора. Первый осуществляет все необходимые движения, второй все необходимое управление.
    Описывая конструктивную компоновку промышленного робота, невозможно удержаться от естественной аналогии с человеческим или животным "механизмом".
    Каждый промышленный робот имеет "мозг" - устройство управления и механическую часть, включающую "тело" и "руку". Тело робота, как правило, массивное основание, или, как его называют, станина, а рука - многозвенный рычажный механизм - манипулятор. Чтобы рука могла совершать положенное ей многообразие движений, она имеет мышцы - привод.
    Задача мышц - преобразование сигналов мозга в механические перемещения руки. Венчает механическую руку, кисть или захватное устройство - схват.
    Большинство промышленных роботов имеет одну руку, но существуют и роботы, обладающие двумя, тремя и более руками.
    По конструкции механические руки робота могут либо повторять схему конечности животного и человека, либо иметь другую природу. Как правило, они устроены в соответствии с тремя принципами.
    Первый принцип - механическое моделирование конструкции руки человека. Здесь рука робота имеет суставы: предплечье, локоть, кисть, построенные по принципу осевого или шарового соединения. Гидравлические или электромеханические мышцы роботов обеспечивают подвижность этих суставов почти так же, как и в живом организме.
    Второй принцип базируется на совокупности линейных перемещений специальных штанг: горизонтальном, вертикальном, угловом, которые обеспечивают необходимую подвижность руки робота.
    Третий принцип основан на комбинации двух предыдущих.
    Большинство промышленных роботов (назовем их ПР) обладают устройствами руки, имеющими три-пять степеней свободы. Захватное устройство - кисть имеет еще две степени свободы. Иногда и сама станина имеет возможность перемещаться на одну-две степени свободы (например, вращательное и вертикальное перемещения).
    Замечено, что роботы с вращательными соединениями по сравнению со скользящими поступательными обладают при прочих равных условиях большим объемом обслуживаемого пространства.
    Как же устроены мышцы роботов, какая сила заставляет эти железные руки поднимать тяжести и исполнять сложные движения? Путей развития таких исполнительных элементов несколько. Для достижения большой грузоподъемности, свыше ста килограммов, используется гидравлический привод; для выстраивания в технологические линии на заводах точного машиностроения - электрический; а при работе с химическими веществами более безопасны пневмосиловые устройства.
    Кроме того, возможны разнообразные комбинации приводов, например пневмогидравлические. Здесь в качестве основного привода используется пневматический, а гидравлический служит для повышения силовых возможностей, для улучшения динамических характеристик, в частности для стабилизации скорости и торможения. Известно применение электроприводов в качестве задающих устройств для более мощных гидравлических мышц.
    По зарубежным данным, около половины используемых в настоящее время роботов имеют пневматические мышцы, приблизительно 40 процентов гидравлические, остальные - электромеханические и прочие.
    При конструировании рук робота приходится решать массу необычных проблем. При этом, естественно, не обязательно копирование возможностей человеческой руки. Как раз наоборот, зачастую приходится думать, как научить робота делать то, что человеку не под силу. Нельзя, например, обработать заготовку с точностью до одного микрона вручную, робот же справляется с этой непростой задачей весьма успешно. Используемые в настоящее время промышленные роботы имеют грузоподъемность от нескольких десятков граммов до трех и более тонн, число степеней свободы от двух до шести и более, точность позиционирования 0,05 - 5 миллиметров, объем обслуживаемого пространства - 0,01 - 10 кубических метров. Однако эти характеристики взяты в среднем. В Англии, например, выпущен робот для установки на шлифовальный станок валов массой двенадцать тонн. Как показало специально проведенное обследование, 80 процентов промышленных роботов применяются для манипулирования деталями и изделиями массой менее одного килограмма, чаще всего цилиндрической формы, диаметром до 50 миллиметров.
    Пневматические "мышцы" робота построены с помощью набора пневмоцилиндров для создания поступательного движения, пневмодвигателей для вращательного. Они используют специальные пневмоклапаны для управления и регулировки скорости перемещения и остановки поршня. Управление таким приводом весьма просто. Усилие, развиваемое на штоке пневмоцилиндра, зависит от давления сжатого воздуха и легко регулируется с помощью специальных клапанов. К преимуществам пневматических мышц относятся безотказность в работе, сокращение необходимой рабочей плоскости, так как приводы располагаются обычно прямо на механических узлах, низкая стоимость, простота обслуживания и ремонта. И хотя пневматический сигнал передается несколько дольше электрического, время переключения пневматического вентиля меньше. Пневмопривод работает от автономной установки или от общей воздушной магистрали.
    Гидравлический привод по принципу действия аналогичен пневматическому. Только вместо сжатого воздуха здесь используется жидкость. Он обладает большей мощностью и используется для самых могучих рук роботов (до нескольких тонн). Однако гидроприводы требуют более квалифицированного обслуживания и в случае утечки жидкости могут загрязнять окружающую среду.
    Еще совсем недавно число роботов, основанных на электрических приводах, было сравнительно невелико.
    Однако в последнее время электродвигательные мышцы роботов завоевывают все большую популярность. Это прежде всего связано с такими принципиальными преимуществами электромеханических приводов, как легкость и удобство монтажа и наладки, простота эксплуатации, наконец, отсутствие шума при работе и грязи от утечки жидкости.
    До недавнего времени развитие такой простой и удобной мускулатуры сдерживалось отсутствием специальных электродвигателей, ,ведь роботу требуется двигатель с лучшей, чем обычно, перегрузочной способностью и малым моментом инерции ротора. Появление специальных электродвигателей с печатным цилиндрическим или дисковым ротором, с гладким ротором, с линейным движением быстро ликвидировало эту прореху. Электрический привод обеспечивает хорошие динамические характеристики разгона, остановки, поворота, повышенную точность позиционирования (меньше 1 мм) и широкую маневренность. Электроприводы применяются и для большинства образцов очувствленных роботов второго поколения. Это связано не только с удобством эксплуатации и отсутствием шума, но и с большей гибкостью электроприводов в отношении реализации необходимых алгоритмов адаптивного управления.
    Знаменитый Шерлок Холмс отличался поразительной наблюдательностью. По мельчайшим признакам он опознавал профессиональную принадлежность своею очередного клиента. Внимательно рассмотрев руки человека, он делал вывод о том, чем он занимается, каковы его профессиональные обязанности. Как же сказывается профессия робота на внешнем виде его рук, смог бы проницательный Холмс и здесь применить свой знаменитый дедуктивный метод?
    Роботы применяются на самых разнообразных операциях и работах с деталями, которые резко отличаются по прочности, массе, габаритам, конфигурации, расположению центра масс, шероховатости. Детали могут быть керамическими и стеклянными, пластмассовыми и металлическими. Массивные поковки и крупногабаритная тара, стальные листы и кирпичи, листы из стекла и стеклянные трубки. Робот может манипулировать с собранными узлами или с тарой с насыпанными легкими деталями, емкостями с жидкостью и, кроме того, работать различными инструментами: распылителем, гайковертом, пневмоотверткой, паяльником или сварочными аппаратами.
    Взглянув на "руки" промышленного робота, почти любой человек, даже не обладающий проницательностью Холмса, сможет, немного подумав, определить сферу "профессиональных интересов" робота. Вот клешни из трех крюков для круглых поковок, вот присоски, как у осьминога, для стеклянных листов. Вот ковш для сыпучих материалов и т. д. и т. п. Еще проще разобраться в обязанностях робота, если "руки" его снабжены специализированным инструментом: сверлом, краскораспылителем, гайковертом и т. п. Инструмент закреплен прямо на руке, а не в схвате, теперь уже ненужном.
    Поразительная универсальность руки человека - продукт длительной эволюции. Нужна ли такая универсальность роботу, оправдана ли она технически и экономически? Навряд ли, по крайней мере, на данном этапе эволюции робота. Вспомним, как разнообразны и специализированы конечности и "руки" животных.
    Плавники и когти, присоски и клешни, хобот слона, хвост обезьяны, щупальца осьминога... Примерно так же разнообразны оконечные устройства "рук" робота.
    Здесь человек "похитил" у природы не один десяток технических идей.
    Наиболее распространена "двупалая лапа" наподобие клюва птицы или клешни краба. Она отлично выполняет функции взятия и переноса большинства типов деталей механообработки. Если же требуется более надежное удержание детали, особенно круглой формы, применяется трехпалая кисть - почти точное подобие птичьей лапы. Заметим, что птица легко удерживается на круглой ветке дерева при весьма высоком относительно ветки центре тяжести.
    Если деталь крупная, длинная, применяются многоместные захваты несколько двупалых или трехпалых рук хватают длинную трубу во многих местах.
    Для транспортировки жидкости используется ковш, для взятия сыпучего материала - трехпалый ковшик, чемто напоминающий хитиновые надкрылья жука или складывающиеся лепестки тюльпана.
    Если деталь имеет достаточно большую поверхность, применяются присоски по типу осьминожьих.
    Особая форма или мягкость присосок позволяет брать не только гладкие стальные, пластмассовые, стеклянные листы, но даже гофрированные детали или фигурные штампованные изделия.
    Есть в арсенале робота и "собственные патенты" - схваты магнитные, они надежно удерживают стальную или жестяную деталь, когда подобрать мало-мальски подходящий механический "хвататель" не представляется возможным. Здесь используются как электромагниты, так и постоянные магниты, иногда с механически изменяемым силовым полем.
    Для захвата деталей типа труб и полых цилиндров изнутри используются раздвигающиеся пальцы, специальные надувные груши, а то и просто палочка штырь, продеваемый в цилиндр.
    На выставке НТТМ-82 демонстрировались роботы, искусно манипулирующие с электролампами. Кроме прочих, весьма привлекательных достоинств, один из роботов имел хитроумный захват в виде резиновых гофрированных хоботков. Когда воздух подавался в кисть, хоботки, раздуваясь, изгибались и захватывали лампочку за тонкостенную стеклянную колбу с деликатной осторожностью, но прочно. Масса нежных присосок-пальчиков используется для манипуляции с мягкими изделиями, например шоколадными конфетами или диетическими яйцами.
    Различаются "руки" роботов и по размерам: есть экземпляры лапищ для многотонных валов, а есть миниатюрнейшие щипчики-пинцетики для изделий микроэлектроники или часовых шестеренок. Некоторые пальчики-усики манипулируют с детальками, различимыми лишь в микроскоп. Существуют и пятипалые "руки", подобные кисти человека, однако такие образцы в силу сложности конструкции, и особенно управления, - пока прерогатива лишь лабораторных моделей.
    Окружающая нас природа - неиссякаемый источник радости, жизни и здоровья. Человек, ушедший от природы в города, квартиры, отгородившийся от нее стеной, окном и асфальтом, тянется к ней, даже не осознавая, зачем ему это.
    Писать о красоте с утилитарных позиций - несомненное интеллектуальное варварство, но психология современного прагматика зачастую невосприимчива к эфемерным категориям прекрасного. Поэтому мы скажем о природе с точки зрения нашей проблемы - промышленной роботехники.
    Природа не патентует своих изобретений, она наладила массовое производство огромного множества естественных механизмов, наделенных тонкими конструктивными решениями и блестящим физическим воплощением. Мы используем лишь малую толику этого богатства, варварски уничтожая остальное. За последние сто лет полностью исчезли с лица земли десятки видов животных и растений, еще сотни находятся на грани уничтожения. Мы уже никогда не сможем воспользоваться ни их техническими новинками, ни просто красотой и грацией. Красная книга экологов - это не что иное, как собрание патентов природы, которые человек пытается защитить от забвения.
    ОДА ПЕШЕМУ ХОДУ
    И. Артоболевский и А. Кобринский, основываясь на плодотворной аналогии между роботом и человеком, условно разделили совершаемые ими производственные движения на три типа: локальные, региональные и глобальные. Локальные движения - это все то многообразие манипуляций, которое мы совершаем посредством кистей рук: взять, положить, перевернуть, вставить, вынуть. Региональные движения совершаются с использованием механических возможностей всей руки: перенос детали с одного места в другое при неподвижном основании робота. Наконец, глобальные движения это перемещение самого робота.
    Специфику локальных и региональных движений мы интенсивно обсуждали выше, в то время как глобальные перемещения робота остались в тени. Это и понятно, глобальные движения - прерогатива транспортных систем: автомобилей, электрокаров, вездеходов и луноходов. Здесь используется весь инструментарий многовековой истории транспорта: колесо, рельс, монорельс, гусеница и т. п. Однако существуют и специфические, только роботу присущие средства передвижения. Это ближайшие родственники манипуляторов педипуляторы, или, попросту говоря, ноги (manus по-гречески - рука, pedis - нога). Ну уж это ненужная экзотика, скажет читатель, неужели им мало колеса, не слишком ли далеко заходят эти роботехники в своем ненасытном желании внедрить природные патенты? Разумеется, читатель вправе так рассуждать.
    Имея перед глазами многовековую историю колесных транспортных средств от телеги до современного лунохода, мы склонны считать шаговый принцип передвижения более примитивным и недостойным нашего технического века. С первого взгляда нам кажется, что колесо, несомненно, эффективнее ног. К примеру говоря, человек на велосипеде тратит лишь половину энергии пешехода. Почему же тогда природа избегает колес? Почему колесо эффективное средство передвижения, изобретенное человеком, - никогда не использовалось природой в процессе эволюции животного мира? Почему, скажем, нет крыс на колесах или рыб, использующих гребной винт? Ответ, возможно, состоит в том, что они имеют нечто лучшее...
    Рыбы перемещаются в воде с помощью движений хвоста, при этом КПД оказывается равным 95 процентам, в то время как гребной винт обеспечивает максимум 60 процентов. Загадка скорее состоит в том, почему технические специалисты не обращают внимания на способ передвижения рыб.
    Но ведь колеса точно эффективней ног. Однако и здесь разгадка может крыться в том, что колеса хороши лишь на гладкой и твердой поверхности. А в природе она встречается редко. Поэтому естественный отбор не благоприятствовал появлению животных на колесах в процессе эволюции. Известно, что колеса беспомощны на мягкой почве -вспомним автомобиль, засевший в грязи, - не приспособлены для перемещений по вертикали, стесняют повороты на ограниченной площади. Такие соображения кажутся более убедительными, чем теория о плохой сочетаемости кровеносных сосудов и нервов с вращающимися соединениями или гипотеза о том, что эволюция просто случайно не "наткнулась" на принцип колеса.
    А как же вездеход? Он ходит "везде" без всякой дороги? Ну, во-первых, не везде, а во-вторых, его колесо покоится на жесткой мостовой - гусенице, которую вездеход сначала прокладывает "перед собой", а затем сам по ней передвигается. Шагоход же эффективно перемещается по любой поверхности. Он может легко менять походку: подниматься на "цыпочки", чтобы не зацепить днищем за стоящий поперек дороги станок, присесть, чтобы пролезть под низко расположенный трубопровод, повернуться, переступая ногами почти на пятачке. Всюду здесь ноги удобней, чем колеса, поскольку современное промышленное предприятие порол так же "непроходимо", как "коварные джунгли Амазонки".
    Прежде всего у конструкторов возник вопрос: каково оптимальное количество ног? Почему у сороконожки сорок ног, у жука - шесть, у животного - четыре, а у человека - две? Много ног - это высокая устойчивость машины, но и необычайно сложная задача координации их движения. Не стоит ли в прямой зависимости от количества ног развитие двигательного мозгового центра? В природе сороконожка не задумывается над своей походкой. Однако инженер, конструирующий сороканожной механизм, обязан растолковать машине все тонкости ее перемещений, и если в известной притче сороконожка, пытающаяся понять, как же она ходит, немедленно запутывалась, то конструктор шагохода работает "без права на ошибку", исключая многосложные варианты конструкции, стараясь найти минимальную конфигурацию.
    Специалисты пришли к заключению, что для надежной устойчивости движения машине достаточно шести ног, так как три точки опоры в состоянии покоя самое устойчивое положение. Не случайно штатив фотоаппарата или теодолита - это популярный треножник.
    История создания ноги робота начинается с середины XIX века. Русский математик П. Чебышев стал родоначальником целого направления в конструировании шагоходов. Он сконструировал знаменитую "стопоходящую машину", представляющую собой комбинацию четырех лямбдаобразных механизмов в виде греческой буквы Я. Пока башмак ноги опирается на грунт, корпус машины горизонтально перемещается вперед. Оторвавшись от земли, башмак описывает в воздухе кривую, напоминающую траекторию стопы пешехода. Последователи П. Чебышева работают в направлении, при котором "лапы" машины копируют движение ног человека или животного - так называемый "траекторный синтез" походки.
    И. Артоболевский работал также и над проблемой шагающих механизмов. В докладе, подготовленном им с соавторами и прочитанном на четвертом совещании по проблемам теории механизмов и машин в Ленинграде, были определены требования к шагающему механизму и решены важнейшие динамические задачи, связанные с этой проблемой. Одними из первых в нашей стране шагающую машину создали специалисты Ленинградского института приборостроения. Ее шесть ног усеяны датчиками, так что в электронный мозг машины непрерывно поступают данные и о положении ног в пространстве, и о поверхности, на которую они ступают.
    Примерно по тому же принципу работает и шагающий агрегат, созданный совместными усилиями специалистов Института механики МГУ и Института проблем передачи информации АН СССР. В Институте машиноведения создан прообраз машины, объединяющий в себе достоинства многих предыдущих конструкций.
    В фильме "Человек и робот" мы видели знаменитую "шестиножку", над которой работал коллектив ученых Института проблем управления - целое содружество математиков, медиков и механиков. "Шестиножка" ходит, преодолевая препятствия из коробок и кубиков, выбирая при этом наиболее удобный маршрут. У нее есть органы зрения и осязания, есть электронный мозг, расположенный, правда, на расстоянии. Машина соединена с ним электрическим кабелем (ведь для этих "простых" шагов нужна целая современная ЭВМ). Однако шесть ног порождают все еще большое число вариантов походок. Переставляя поочередно по одной ноге и варьируя при этом очередность, мы имеем возможность выбрать один из 120 вариантов походок. Перемещая по две ноги, имеем еще девять вариантов. Наконец, можно переставлять по три ноги сразу: две левых - одну правую, две правых - одну левую.
    Шестиногий "жук" может идти и быстро и медленно, находясь все время в устойчивом положении.
    Для четвероногих машин проблема поддержания устойчивости становится уже более актуальной, хотя здесь у нас перед глазами все еще есть природный прообраз.
    Четырехногий "конь" американского инженера М. Листона, снабженный манипулятором, может оказаться полезным в металлургическом производстве, например для транспортировки массивных и горячих заготовок из цехов термической обработки на участки ковки или штамповки. Первый весьма маневренный вариант такого агрегата обладает грузоподъемностью 300 килограммов. Хотя в нем предусмотрено место для оператора, оно используется лишь при обучении робота.
    В движение ноги этого робота приводятся электрическими сервомоторами. Логика перемещения ног фиксируется и воспроизводится с помощью современной мини-ЭВМ.
    Национальное управление по космическим исследованиям США ведет активные разработки транспортных ЕОСЬМИНОГИХ и шестиногих машин для разведки лунной поверхности. В этих вариантах функции распределяются так: четыре или три ноги служат для сохранения равновесия, а остальные четыре или три - для передвижения. Внешне эти машины напоминают два соединенных между собой стоящих чемодана. Каждый чемодан скрывает в себе двигатель и шарнирные механизмы четырех ног, одна пара ног шагает коленями вперед, а другая пара - коленями назад в полном соответствии с кинематикой животного.
    В Японии доктор А. Мори с сотрудниками в Токийском технологическом институте занимается созданием опытной шестиногой машины.
    Из четырехногих машин известны следующие: транспортная машина, созданная фирмой "Дженерал электрик", и конструкция Маг Ги, имитирующая движение лошади.
    Из двуногих машин известна транспортная модель фирмы "Дженерал электрик", а доктор Като из университета Васэда в Японии успешно занимается созданием шагающего на двух ногах устройства, имитирующего походку человека. В этом антропоморфном шагоходе используются специально разработанные искусственные мускулы. Они представляют собой гибкие резиновые шланги, соединенные в небольшие грозди по три секции.
    В обычном, расслабленном состоянии мышцы пассивно провисают. Для того чтобы привести мышцу в напряжение, в нее подается с помощью тонкого шланга сжатый воздух, и три секции мышцы раздуваются в круглые шарики, в результате чего мышца укорачивается, и соответствующая ей часть скелета ноги поднимается и передвигается.
    На сегодняшний день во всех странах мира созданы самые разнообразные шагающие механизмы. Но все они "ходят" совсем не так, как мы. Человек при ходьбе или беге находится в неустойчивом состоянии - если прервать движение, он упадет. Все созданные же до сих пор шагающие механизмы, напротив, постоянно пребывают в состоянии не только динамического, но и статического равновесия, и это сильно ограничивает их подвижность. Чтобы двуногий робот стал полноценным "ходоком", нужно научить его преодолевать неустойчивость.
    Над этой проблемой работает группа ученых из Массачусетского технологического института. Они разработали автономную прыгающую кибернетическую ногу, оснащенную микрокомпьютером и источником питания.
    Единственный ее "сустав" - колено, "ступней" служит поперечина, не позволяющая ноге падать набок. Полутораметровая конечность способна стоять, выпрямляться, падать вперед и вновь подниматься. Цель ученых заставить ее перемещаться прыжками в произвольном направлении. В настоящее время робот-одноножка проходит процесс обучения. Его компьютер программирует себя сам, вырабатывая методом проб и ошибок оптимальный способ прыгания. Ошибаясь и "запоминая" свои ошибки, нога по мере приобретения опыта перемещается все более уверенно. "Иногда ее усилия просто трогательны", - заявил помощник руководителя группы.
    В исходном положении она лежит на полу. Затем поднимается, медленно падает вперед и достигает позиции готовности к прыжку. Затем подпрыгивает, оттолкнувшись "ступней". После приземления нога попадает в неустойчивое состояние, ее увлекает инерция, и она опять падает вперед. Теперь одноножка готова к новому прыжку.
    "Мы бы хотели создать в будущем робота, обладающего силой бульдозера, грацией балерины и ловкостью кошки", - говорят авторы проекта. Возможно, где-то в XXI веке в одной из сказок можно будет прочесть примерно следующее: "Стоит в цеху коттеджик на птичьих педипуляторах, а в коттеджике живет Баба Яга - с микрокомпьютером нога".
    ЛЕГКО ЛИ ПОДНЯТЬ БУМАЖНЫЙ СТАКАНЧИК?
    Легко ли поднять бумажный стаканчик? А что здесь трудного, взял и поднял! Но не будем торопиться, вдумаемся в ту бездну тончайших "глобальных", "локальных" и "региональных" движений, сложных идеомоторных актов, которые для этого необходимы.
    В буфете столовой МВТУ имени Н. Э. Баумана у прилавка толпилась очередь. "Кофе и булочку", - произносил очередной покупатель и, прихватив левой рукой сдачу, правой брал небольшой бумажный стаканчик с горячим напитком, накрытый румяной булкой. Нести его было недалеко - к соседнему столику, расположившемуся в нескольких метрах; за ним покупатель мог вдоволь насладиться горячим напитком со свежей булкой.
    Казалось бы, тривиальная задача - перенести бумажный стаканчик с булочкой на расстояние нескольких мегров. Но в этом движении такое разнообразие проявлений вестибулярной активности, перед которым с благоговением снимает шляпу современный конструктор механических манипуляторов. Как взять стаканчик так, чтобы не сплющить его и не пролить ни капли из налитого до краев горячего напитка? Как взять его так, чтобы не слишком обжечь пальцы горячим кофе? Как, передвигаясь к столику, не расплескать кофе и не потерять булочку, свободно лежащую на стакане? Как не столкнуться с теми, кто в хаотическом порядке движется по миниатюрному пространству буфета? Как не слишком активно поставить стакан на столик и именно туда, откуда его удобнее всего потом взять, чтобы испить вожделенного напитка? Как не попасть каплей на брюки, не подмочить булочку, чтобы потом не испачкать пальцев при еде? Вот сколько проблем! Но покупатель выполнил все задачи отлично, при этом успев обсудить со своим коллегой итоги только что сданного экзамена по робототехнике.
    Разумеется, цех современного предприятия не буфет со столиками, и промышленному роботу вряд ли придется манипулировать бумажным стаканчиком и булочкой. Однако тонкостенные электролампы или миниатюрные изделия микроэлектроники не менее чувствительны к рукопожатию механической руки, а современный цех устроен не проще вузовского буфета.
    Манипуляционные свойства руки робота многогранны и динамичны. Робот берет детали или тяжелые собранные узлы на разном удалении и неодинаковой высоте, переносит их по сложным траекториям в обход препятствий, продвигая через узкие отверстия, закрепляя в нужном положении на станке, держателе, поддоне. Перемещение происходит с высокими скоростями, в обстановке постоянно меняющейся производственной среды. "Ну и что, - скажет читатель, - на это и даны роботу мощные мускулы, подвижные суставы железного скелета". Это, разумеется, верное замечание, которое свидетельствует о том, что читатель уже неплохо разбирается в "физиологии" робота, однако настало время поговорить и о его "психологии".
    Кроме известных силовых свойств, мускулы робота должны быть идеально управляемыми, они должны мгновенно и точно выполнять команды "мозга" расслабляться и напрягаться, производя ровно то усилие, которое необходимо, чтобы поднять, но не раздавить хрупкую лампу, кинескоп, микромодуль. Итак, силовой привод робота- это прежде всего универсальная управляемость.
    Как же происходит управление роботом, откуда берется его "ум", дающий такую бездну манипуляционных возможностей? "Ум" робота берется от его создателя - человека, а человек берет этот манипуляционный ум, наблюдая за самим собой.
    "Работая над созданием роботов, я внимательно присматривался ко всему, что мне приходилось делать руками, и пытался представить себе, как мог бы сделать то же самое робот с электронным мозгом. Способность человека к тончайшей координации движений и к оценке возникающих в процессе работы обстоятельств настолько меня потрясла, что я решил серьезнэ заняться телеуправляемыми механизмами..." - пишет известный изобретатель М. Тринг в книге "Как изобретать?".
    Промышленные роботы появились в производстве как машины, способные выполнять некоторые функции человека. Прежде всего в их задачу входит перемещение деталей и заготовок либо по заданным заранее траекториям, либо от одной заданной пространственной точки к другой. При рассмотрении аналогичных движений человека, стремящегося попасть рукой в определенное место, можно выделить две основные фазы: динамическую и стабилизирующую. Первая - динамическая - фаза характеризуется высокой скоростью и приближенным направлением движения. Вторая - стабилизирующая - резким снижением скорости и более точным координированием направления, как правило, сопровождающимся колебательными движениями малой амплитуды. Направленное движение происходит при непрерывном зрительном и кинематическом контроле, а конечный результат проверяется осязанием и слухом.
    Движение исполнительного механизма современного промышленного робота первого поколения характеризуется теми же фазами, но в стабилизирующей фазе отсутствуют поисковые колебательные движения вблизи конечной точки. Координаты этого положения должны задаваться и воспроизводиться жестко, объекты манипулирования должны располагаться точно в предусмотренном программой месте и точно в таком положении, в котором робот сможет их взять. Ведь робот первого поколения - это "слепой", не имеющий обратной связи механизм.
    Человек порой не осознает, как он выполняет то или иное сложное движение: завязывает ботинки, застегивает пуговицы, ставит свою подпись и т. п. Мы выполняем многое рефлекторно, как результат длительной тренировки координации движений, моторики и ориентации.
    Вы замечали, как малыш тянется ручками к игрушке, которую он не в состоянии достать? Это он учится координировать зрительные образы с длиной своих рук.
    В то же время человеку так и не удается достичь в этом "робототехнического совершенства". Такой элементарный для робота двигательный приказ, как "передвинь руку на пятнадцать сантиметров вверх", с закрытыми глазами человеку практически выполнить невозможно.
    Чтобы понять хотя бы приближенно масштаб проблемы, проведем следующий опыт. Оторвитесь на мгновение от книги и посмотрите вокруг. Зафиксируйте расположение предметов в комнате, на столе, на диване.
    Теперь закройте глаза, встаньте со стула или кресла и, не открывая глаз, пройдитесь по комнате, возьмите какой-нибудь предмет, скажем, вазу с цветами и переставьте ее на несколько метров в сторону, на другой стол или тумбочку. Ну как, получилось? Независимо от успеха вашего "манипуляционного акта" вы можете себе представить, какие трудности подстерегают движущуюся руку робота и сколько проблем приходится решать его системе управления.
    Попробуйте мысленно проговорить про себя все, что вы проделывали: встать, сделать шаг правой ногой, сделать шаг левой ногой, поднять руку, раздвинуть пальцы, подвести пальцы к вазе, сомкнуть пальцы до соприкосновения с вазой, сдвинуть пальцы так, чтобы сила трения между поверхностью пальцев и вазы была больше, чем вес вазы (иначе ваза выскользнет из пальцев), поднять руку с вазой, повернуться на нужный угол и т. д. и т. п. Это и будет своеобразная программа для робота, правда, очень укрупненная. Такие команды, как "встать", "сомкнуть до соприкосновения" или "сделать шаг правой", сами представляют собой целую программу, или, точнее говоря, на языке программистов, стандартную подпрограмму. Затем эти команды нужно преобразовать в пневматические или электрические импульсы соответствующим мышцам, те, в свою очередь, в соответствующие перемещения, углы и моменты и все это проделать с поистине ювелирной точностью. Современный промышленный робот первого поколения обеспечивает точность позиционирования до 0,1 миллиметра. Чтобы представить себе нечто подобное, попробуйте с закрытыми глазами с расстояния хотя бы сантиметров 30 попасть иголкой в точку в конце данной фразы. Не получилось? Ну что ж, попробуйте еще раз. Опять не получилось? Не отчаивайтесь, попробуйте представить, как "тяжко" промышленному роботу, который должен сделать то же самое с расстояния около двух метров, со скоростью несколько метров в секунду при весе иглы несколько килограммов или даже десятков килограммов.
    Это тем более трудно сделать, ибо для промышленного робота первого поколения обучающий его оператор является единственным источником внешней информации о требуемых действиях. Это поводырь нашего механического слепого. Информация вводится в виде программы работы в память робота, и он выполняет поставленную задачу в автоматическом режиме, не получая уже никакой дополнительной информации извне.
    Существует несколько основных способов составления и ввода программы в память робота.
    Во-первых, можцо рассчитать программу движения в виде отдельных команд и кадров и затем ввести ее в память робота. Во-вторых, можно осуществить обучение робота путем однократного "образцового" выполнения задачи в режиме ручного управления манипулятором с пульта путем нажатия кнопок и рычагов. В-третьих, можно обучить робота нужным движениям, взяв его механическую руку и проведя по всем необходимым точкам траектории.
    Программирование по первому принципу очень похоже на программирование ЭВМ, только вместо адресов данных и команд арифметических и логических операций ЭВМ используются "адреса" точек пространства и команды "манипуляционных операций": поворот рук вправо (влево), выдвижение втягивание, поднятие - опускание, размыкание - смыкание схвата, вращение кисти вправо - влево и т. п. Программа представляет собой набор таких команд и выполняется циклически необходимое количество раз.
    Обучение по второму принципу представляет собой "программирование в реальном времени". Оператор с помощью рычагов и кнопок, расположенных на пульте управления робота, принуждает его к выполнению тех или иных движений. Эта совокупность движений записывается в память робота и воспроизводится нужное количество раз.
    Третий принцип обучения больше всего походит на обучение ребенка. Как часто, исчерпав терпение, мы говорим малышу: "Да не так, а вот так..." - и проводим его ручкой с ложкой от тарелки ко рту, мелом на доске или пальцем по клавишам пианино. Точно так же можно научить и робота. Опытный сварщик проводит сварочным аппаратом, закрепленным на руке робота, по оптимальной траектории шва. Движение записывается в память робота, и работа закипела. Обученный робот функционирует автономно под управлением мозга, в память которого заложена программа движений.
    В простейших роботах используется цикловая система управления, движения осуществляются "от упора до упора". Программоносителем такой системы управления является специальный барабан, усеянный штырьками.
    При воспроизведении барабан поворачивается, штырьки включают приводы, приводы "приводят в движение" всю систему. Такие системы управления называют позиционными.
    Непрерывная система управления базируется на принципе магнитофона, записывающего на магнитную ленту совокупность электромагнитных импульсов. Эти импульсы посылают приводы, когда рука робота проводится по заданной траектории.
    Наиболее "прогрессивным" способом программирования робота является первый из описанных выше, когда программа робота составляется подобно программе для ЭВМ. Дело в том, что составление такой программы для робота можно поручить... другой ЭВМ. А при "массовом производстве" программ это дает немалый эффект. Вот пример подобного программирования.
    Рассмотрим технологический цикл нанесения многослойного покрытия на деталь сложной формы "воронка". Воронка имеет "хвост" - удлиненную часть детали и основание - полый конус. В цеху имеется длинная ванна со специальным составом, над которой расположен "мост" для просушивания очередного слоя покрытия. Технология покрытия заключается в следующем. Подойдя к очередной воронке, рабочий берет ее за "хвост" и опускает в ванну, затем переходит к следующей детали. Следующая деталь находится в ванне. Взяв деталь за "хвост", рабочий вынимает ее из ванны и помещает на "мост", где деталь проходит сушку, затем переходит к следующей детали. Дойдя до конца ванны, рабочий возвращается обратно и, смотря по тому, где находится первая деталь, помещает ее либо в ванну, либо на мост для сушки. После десяти таких окунаний деталь готова. Она помещается на транспортер для движения на склад. Укрупненная программа такой операции будет выглядеть примерно следующим образом:
    1. Двигаясь далее вдоль ванны, дойти до позиции "мост".
    2. Взяв деталь за "хвост", поместить ее в ванну для мокрой обработки.
    3. Ждать 10 секунд.
    4. Двигаясь далее, дойти до позиции "мост".
    5. Взять деталь под "мостом" за "хвост", поместить ее на "мост" для просушки.
    6. Повторить 10 раз.
    7. Поместить деталь в тару для транспортировки на склад.
    8. Взять следующую группу деталей.
    9. Вернуться к пункту 1.
    Получается примерно так, как в известной детской считалочке:
    Еду дальше, вижу мост.
    Под мостом ворона мокнет.
    Взял ворону я за хвост,
    Положил ее на мост
    Пусть ворона сохнет.
    Еду дальше, вижу мост,
    На мосту ворона сохнет,
    Взял ворону я за хвост,
    Положил ее под мост
    Пусть ворона мокнет.
    И т. д.
    РАБОТА ЗАКИПЕЛА!
    Присматриваясь к стремительным и своеобразным движениям промышленного робота, мы еще и еще раз убеждаемся в известной истине: движение не только функционально, оно и эмоционально. То чудится нам в этом движении скрытая угроза, то видится неведомая птица, важно попивающая водицу из металлической лужицы, то паукообразное насекомое, строящее свое гнездо, то вдруг предстает перед нами странный, таинственный шаманский танец, подчиненный идеальному ритму.
    Эти танцевальные "па" роботов подсказали специалистам по рекламе отличный фокус: женский танцевальный ансамбль ритмично воспроизводил производственные движения роботов. Причем девушки с особой грацией копировали вроде бы монотонные движения своих стальных "партнеров". И получился в сочетании с ритмичной музыкой очень неожиданный номер.
    Короткий этот "фильм-концерт" показывала своим гостям на международной выставке "Автоматизация83" финская фирма "Розенлев" - давний торговый партнер нашей страны.
    "Мы избрали средства кино, чтобы представить модульную систему роботов, - говорит один из руководителей компании, Матти Ламми. - Модули - это узлы, в совершенстве освоившие те или иные виды движения - прямолинейные, вертикальные, вращательные... Они легко упаковывают в тару и телевизоры, и хлебные изделия, и бревна, распиленные по лучу лазера. Как в детском конструкторе, из модулей можно создавать поистине универсальные роботосистемы..."
    Область возможных и экономически выгодных применений роботов первого поколения весьма широка.
    Они успешно применяются для обслуживания станков, печей, прессов, технологических линий, сварочных аппаратов, литейных машин и т. п. Они эффективно осуществляют установку, транспортировку, упаковку изделий, простейшие сборочные операции, сварку, литье под давлением, термическую и механическую обработку. Особенно широко они применяются в машиностроении и металлургии.
    Сейчас нет, пожалуй, такой области промышленного производства, где бы робот не попробовал свои силы, а попробовав, не завоевал бы престижного положения.
    Наибольшее число роботов первого поколения работает в автомобильной промышленности. Волжский автомобильный завод, завод имени Лихачева, автомобильный завод имени Ленинского комсомола не только применяют, но и сами разрабатывают и строят промышленные роботы и автоматизированные комплексы.
    Среди автомобильных фирм Европы лидирующее положение по применению роботов занимает давний партнер СССР - компания "Фиат". С 1973 года компания работает над проблемой использования роботов в сварочных операциях - сварка автомобильных корпусов модели 132. В связи с подтверждением экономической эффективности такого применения в 1975 году была создана сварочная линия, на которой обрабатывались корпуса модели 131. В результате полученного опыта инженеры пришли к заключению, что сварка с использованием роботов дает значительно меньший процент брака, чем при сварке обычными универсальными сварочными аппаратами. Однако применение роботов требует большой точности работ на предварительных стадиях сборки.
    Сразу после осуществления "прихватки" кузов проходит через автоматический контрольно-проверочный пункт, показывающий наличие отклонений по размерам.
    На участке завершения изготовления кузовов модели 131 размещается 23 робота-сварщика модели "Юнимейт", которые в час выполняют 620 сварочных соединений на 50 автокузовах, то есть каждый робот в час выполняет работу одного сварщика за смену. Сборка кузовов с четырьмя и двумя дверями выполняется на одной конвейерной линии. Это является единственным изменением программы, хотя "Юнимейт" способен действовать в соответствии с большим количеством программ, что необходимо, если на одной конвейерной линии изготавливается две или три модели автомобилей с различной формой корпусов. Но пока на этой линии "Фиат" данное качество робота "Юнимейт" не используется.
    Первоначально два из двадцати трех роботов на этой линии сварки были оставлены в качестве резерва на случай выхода из строя одного из действующих роботов. Они были запрограммированы на работу по любой из используемых программ. Однако практика подтвердила высокую надежность, и два указанных робота были перепрограммированы на регулярную работу.
    В составе линии пятнадцать роботов типа "Юнимейт-2000" и шесть "Юнимейт-4000".
    По утверждению специалистов компании, средняя эффективность роботов достигает 94 процентов, тогда как у "многосварочных" автоматов около 80 процентов. И хотя многосварочный автомат выполнял большее количество операций в единицу времени, чем робот, однако при его повреждении вся поточная линия останавливалась. При выходе же из строя одного из роботов поточная линия может продолжать функционировать, так как функции вышедшего из строя берет на себя соседний робот.
    Специалисты компании "Фиат" отмечают исключительно высокую надежность роботов марки "Юнимейт".
    За весь пятилетний период эксплуатации не было произведено ни одной замены робота. Стоит, однако, сказать, что длительной службе роботов способствовал высокий уровень технического обслуживания: специалисты хорошо изучили наиболее слабые узлы, что позволило осуществлять техническое обслуживание роботов своевременно и в короткий срок. Изнашивающиеся части своевременно заменялись по мере обнаружения признаков износа.
    Преимущества программируемоети роботов дают возможность компании более быстро приспосабливать производство к меняющимся условиям рынка. Поистине применение промышленных роботов позволит преодолеть ужасающую тенденцию к единообразию промышленного производства, зародившуюся еще в недрах промышленной революции.
    Накопленный опыт не прошел даром. К середиче 1976 года на заводах "Фиат" использовалось уже 90 роботов - 23 на сварке и 67 в основном для механической транспортировки деталей (штампованных изделий, поковок, отливок, изделий машобработки). В целях расширения масштабов использования роботов осуществляются экспериментальные работы по парному применению роботов при сварке. Один из роботов совмещает свариваемые панели, а другой производит точечную сварку.
    В настоящее время все ведущие автомобильные концерны Японии используют, и весьма широко, промышленные роботы. Американская фирма "Дженерал дайнемикс" применяет роботы при изготовлении фюзеляжей самолетов, а "Дженерал электрик" - в производстве холодильников. Устройства такого типа используются также в атомной промышленности, где они, манипулируя с радиоактивными материалами, избавляют людей от этой опасной работы.
    Существуют и оригинальные профессии роботов, например роботы-пекари. В Москве на 10-м хлебозаводе впервые в стране включился в работу такой необычный пекарь-робот.
    ...В цехе, где берет начало несколько хлебных "рек":
    "ржаная", рядом "бородинская", дальше "орловская", - собран автоматизированный комплекс, положивший начало еще одному потоку хлеба "новоукраинскому". Здесь нашел свою первую трудовую вахту робот, созданный, как и комплекс, коллективом ремонтно-механического комбината Управления хлебопекарной промышленности Мосгорисполкома в содружестве с новаторами завода.
    Оператор проверяет температуру в печи. Приборы показывают: термоагрегат готов принять формы с тестом. Включен пускатель, и многочисленные узлы сложного комплекса пришли в движение. Форсунки спрыснули масляной эмульсией формы. Послышался щелчок реле, и конвейер с формами мгновенно остановился.
    Этого момента, казалось, и ждал робот. За четырнадцать секунд он заполнил тестом двадцать форм и дал команду передвинуть конвейер. Снова положил в новые формы точно отмеренные куски теста, и снова - команда конвейеру.
    Прошло два часа, из печи показались первые буханки хорошо выпеченного "роботического" хлеба. "Внедрение технических новинок даст заметный экономический эффект, - говорит директор комбината. - На тех же производственных площадях выпуск хлеба увеличится на десять тонн в сутки, сократится расход растительного масла, улучшатся условия труда".
    Чем отличаются алмазы от бриллиантов? Ответ на этот вопрос знает робот, который трудится на смоленском производственном объединении "Кристалл". Именно этот коллектив одним из первых в стране начал пробовать на шлифовке алмазов механические приспособления, а теперь подключил к этому делу и роботы.
    Нелегко, однако, было научить робота превращать алмазы в бриллианты. Ведь для того чтобь! небольшой светлый камешек, как говорится, "заиграл", нужно придать ему определенную правильную форму, а затем нанести на камешек несколько десятков граней.
    Но не просто нанести, а открыть в камне заложенную гармонию и красоту! Да доступно ли подобное роботу?
    Пока нет! Для начала специалисты поставили себе задачу поскромнее использовать робот на черновых операциях, то есть на наиболее нетворческих, занимающих тем не менее от 80 до 90 процентов общей трудоемкости при превращении алмаза в бриллиант.
    Остальные проценты - это уже в прямом и переносном смысле ювелирная работа, здесь без человека не обойтись.
    "Занялись мы внедрением манипуляторов сначала на предварительной шлифовке, - рассказывает генеральный директор объединения И. Судовский. Правда, никто нам этой работы не планировал, а значит, и не финансировал. Такое уж воспитание у наших инженеров: не могут они равнодушно смотреть на ручной труд, пусть даже самый высококвалифицированный, да и дефицит рабочих рук заставил нас искать им замену".
    С одним из мастеров своего дела - огранщиком бриллиантов с двадцатилетним стажем В. Карпачеповым - мы встретились на рабочем месте. О манипуляторах он самого высокого мнения. Да и как не быть ему довольным? Ведь еще не так давно и он, как и многие его товарищи, работающие пока без "механических рук", то и дело подносили к глазам ограночное приспособление, через лупу проверяли геометрию, сверяли размеры, теряли на это время, быстро уставали...
    Совсем по-иному сейчас: вставил в руку роботу камешек, нажал кнопку - и пошла шлифовка. Рукам же остается чистая, приятная работа - доводка бриллианта до нужных кондиций.
    Сейчас только в смоленских цехах "Кристалла" трудятся 380 электромеханических роботов третьего поколения.
    Каждый день приносит нам все новые и новые сообщения об оригинальных профессиях робота: роботпожарный, робот-сиделка, робот-музыкант, робот-сборщик. Любая газета, любой журнал может оказаться интересным продолжателем темы этих страниц. Нужно только присмотреться повнимательнее, и мы увидим, как неспешно, но уверенно роботы входят в нашу жизнь.
    ЧЕГО НЕ МОГУТ ПРОМЫШЛЕННЫЕ РОБОТЫ?
    Да, многое, очень многое могут и умеют роботы, одно только им не под силу. Не могут эти железные работяги сами собой внедряться на заводы и фабрики, на предприятия и объединения. Внедрение промышленных роботов забота человеческая.
    "К сожалению, товарищи, как раз с внедрением в практику достижений науки и техники у нас, как вы знаете, дело обстоит еще плохо. Хозяйственник, который пошел "на риск" и ввел на предприятии новую технологию, применил или произвел новое оборудование, нередко остается в проигрыше, а тот, кто чурается новшеств, ничего не теряет. Разработать такую систему организационных, экономических и моральных мер, которая заинтересовала бы в обновлении техники и руководителей, и рабочих, и, конечно, ученых и конструкторов, сделала бы невыгодной работу по старинке, - вот в чем задача", - сказал на июньском (1983 г.) Пленуме ЦК КПСС товарищ Ю. В. Андропов.
    Чтобы робот решительно шагнул в промышленность и сельское хозяйство, на транспорт и в сферу обслуживания, необходимо не только и не столько внедрять роботы как факт, но прежде всего обеспечить такую организационную стратегию роботизации, чтобы внедрение действительно было выгодно, действенно и эффективно. Хозяйственник, внедряющий новое, может оказаться в проигрыше не только потому, что роботы дороги, перестройка производства требует времени и существенных организационно-технических усилий, но и потому, что он, хозяйственник, не сообразовал это внедрение со стратегией роботизации.
    Еще недавно при слове "робот" человек восклицал:
    "А, фантастика!" - и поудобнее устраивался в мягком кресле, чтобы сладко "интеллектуально" дремать под завораживающую воображение сказку. Он еще и сегодня, проснувшись от дрема прогнозов, ждет от робота фантастического совершенства. Здесь постарались и писатели-фантасты, привив нам восторженный интерес к своим человекоподобным героям, наделенным сверхинтеллектом, сверхсилой, сверхвыносливостью, сверхбыстротой, антропоморфно романтизируя их "жизненный" путь, их служение людям, их "самопожертвование".
    А затем выясняется, что современные роботы дороги, сложны, порой капризны в эксплуатации и даже небезопасны для человека. Они зачастую требуют перенастройки всей производственной системы "под себя". Более того, появление робота на производстве вскрывает целый ряд наших чисто человеческих несовершенств, с которыми робот не может мириться. Наше техническое детище - робот, подобно ребенку в семье, заставляет нас взглянуть на себя его глазами - критически.
    На производстве действует неумолимый фактор: любая техника должна быть экономически эффективной.
    Опытный образец нового манипулятора, как правило, решает задачу, не решаемую другим путем или вообще не решенную до него. Он работает точнее, быстрее, надежней, оправдывая тем самым свое появление на лестнице эволюции. Появление же робота в цехе подчиняется совсем другим законам экономическим. В цехе робот будет делать то, что делал до него человек, и если применение робота не приведет к существенному повышению производительности, к удешевление продукции, то такая, автоматизация, такой технический прогресс будет нам "не по карману".
    Нецелесообразно, например, заменять роботом рабочего, так сказать, один к одному или держать сложного робота рядом со станком, когда деталь обрабатывается несколько часов. Здесь лучше в нужный момент "подкатить" механического помощника или же использовать простейший манипулятор с ручным управлением.
    Для успешной эволюции роботов необходимо, чтобы они находили спрос на предприятиях, в объединениях, на транспортных системах и в научно-исследовательских лабораториях. Для этого нужно, чтобы они обеспечивали заметный, желательно невооруженным глазом, прирост эффективности, прежде всего экономической. Такая постановка проблемы учитывает важное, но не всегда близкое сердцу требование, предъявляемое ко всему новому: каждый из новых объектов, вводимых вместо старого, должен иметь перед ним и определенные преимущества. На промышленном предприятии внедрение роботов может увеличить объем продукции, повысить надежность и качество изделий, может снизить расход энергии и материалов, но может и не сделать этого. Сама по себе установка робота еще не свидетельствует об ускорении технического прогресса, если она не улучшает общих системных характеристик. Именно общих, а не отдельных участков цехов или станков.
    Таким образом, внедрение робота следует оценивать с точки зрения его влияния на повышение эффективности предприятия в целом, а не отдельных операций и требует комплексного, системного подхода. С этой точки зрения недостаточно, например, просто выявить бракованную деталь, нужно устранить сам источник брака.
    Допустим, что мы установили робота-контролера на предприятии, но технологический процесс не изменили.
    Качество контроля, конечно, возрастет, доля выпущенных бракованных изделий резко уменьшится или совсем исчезнет, так как контроль робота строгий и точный; уменьшится и число рабочих ОТК, но труд робота окажется бесполезным, поскольку источники брака сохранились и эффективность предприятия осталась на прежнем уровне. Возрастет ли при этом общая эффективность производства?
    Разумеется, нет, потому что контроль, по-видимому, не является "узким местом" на этом заводе, хотя на ряде других предприятий, где качество контроля недостаточно, применение роботов может оказаться главным фактором повышения эффективности всей системы.
    Выделение "узких мест", препятствующих расширению производства или являющихся источником брака,- задача, доступная решению только квалифицированных специалистов, имеющих статус системных аналитиков.
    Они должны не только досконально знать производство, не только обладать системным взглядом на объект, но и уметь просто считать деньги, то есть быть отчасти бухгалтерами.
    Часто приходится слышать от представителей промышленности, что рабочих на производстве не хватает, поэтому они согласны вводить автоматизацию "любой ценой". Но такая точка зрения является наивной, ведь на изготовление робота тратятся труд, электроэнергия, металл, пластмассы, дорогостоящая электроника, что, естественно, отражается на стоимости. И если эти затраты не вернутся обществу с лихвой, то такая роботизация вместо восполнения дефицита рабочей силы будет только увеличивать его. Пусть на нашем заводе мы заменим роботами 50 рабочих и при этом вынуждены будем увеличить численность персонала на заводе, изготовляющем роботов, например, на 100 человек. Будет ли в этом случае такая замена оправданна?
    Экспериментальные образцы НИИ и КБ должны быть и универсальными и интеллектуальными. Промышленные же роботы прежде всего экономически выгодными производству, даже если для этого им придется быть проще, глупее и уже ориентированными на то дело, для которого они предназначены.
    "Сложилась такая ситуация, когда, как мне кажется, наука оказалась в большом долгу перед страной, - говорит А. Фишкис, лауреат Государственной премии СССР, главный сварщик ЗИЛа, - почти 10 лет идет работа по созданию и внедрению промышленных роботов, но еще и сегодня нет отработанной, надежной конструкции для условий массового производства. Далеко не все, что могли, сделали ученые и конструкторы. Представляется, что они должны были за эти годы отработать три-четыре конструкции типовых роботов и передать их в промышленность. А они увлеклись экзотикой, занялись говорящим роботом. Действительно, это очень интересно. Однако на сегодняшний день производству нужен обычный универсальный робот-манипулятор, но надежный. Увы, его нет!"
    Вот один пример. Был создан робот-мойщик, которого предложили опробовать на мойке поршневых колец. Условия работы для человека почти невыносимые: содовый раствор, температура 70° С, испарения. Робот же оказался здесь на своем месте, работая в полтора раза производительнее человека. Однако он не справился со своими обязанностями, как говорят, "не потянул". Почему? Оказалось, что на этом предприятии ни в первую, ни во вторую декады месяца колец просто не выпускали, зато в третьей "гнали" весь план. Робот не смог приспособиться к такому графику. Не выдержал "интенсификации" труда, сломался.
    Таким образом, проблема внедрения роботов тесно связана с проблемой дисциплины производства. Не менее остро сейчас встает вопрос о переоснащении цеха, об изменении всего облика производства. А когда вы посмотрите, как двухметровая рука робота летает от станка к станку с колоссальной скоростью, то невольно подумаете и о новых нормах техники безопасности.
    ВТОРОЕ ПОКОЛЕНИЕ
    ОЧУВСТВЛЕННЫЕ РОБОТЫ
    СМЕНА ПОКОЛЕНИЙ
    Так же, как и поколения ЭВМ, "поколения роботов" - понятие весьма условное, оно вызвано к жизни тем, что за время короткой истории роботы претерпели существенную эволюцию в смысле элементной базы, на которой они строятся, изменения их структуры, появления новых функций и возможностей, расширения областей применения, характера использования.
    Роботы первого поколения - это роботы с программным управлением. Они предназначены для выполнения жестко запрограммированной последовательности операций. Управление таким роботом осуществляется по заранее заданной человеком программе при строго определенных и неизменных условиях функционирования.
    Несмотря на широкое распространение и эффективное функционирование, роботы первого поколения "глупы" и "слепы", они лишь выполняют соответствующие инструкции и не способны адаптироваться к неожиданной ситуации, касается ли это какого-нибудь тонкого дефекта или крыши цеха, обрушившейся им на голову.
    Однако роботы не будут столь ограниченны, когда в промышленности появятся их новые образцы, наделенные способностью "чувствовать". Это и будут роботы второго поколения.
    Зная о несовершенстве роботов первого поколения, мы порой утешаем себя популярной пословицей "нет худа без добра". Примитивные роботы дисциплинируют производство, заставляют обеспечить ритмичную доставку деталей, их строгую ориентацию в пространстве с помощью специальной тары, накопителей, стеллажей, транспортных средств. Но не стоит особенно обольщаться по этому поводу. Реорганизация производственной среды может оказаться более дорогостоящей, да и большая жесткость требований к конструкции робота порождает большую цену. Скажем, для того чтобы рука робота "могла" идеально точно встретиться с движущейся по транспортеру деталью, приходится особенно тщательно "выбирать" зазоры в сочленениях, ликвидировать люфты, снижать скорость движения для уменьшения моментов инерции, повышать строгость управления, учитывая упругость звеньев.
    Снижающая точность деформация механических систем промышленного робота происходит практически постоянно под действием собственной массы руки, массы перемещаемого груза и инерционных нагрузок, возникающих во время движения. Несущие звенья руки робота даже при идеально точной остановке привода изза деформации механической системы подвергаются интенсивным силовым инерционным нагрузкам. Деформация от инерционных нагрузок приводит к возникновению затухающих механических колебаний, которые снижают точность и увеличивают время самого позиционирования. Эта деформация особенно сильна в точках изменения ускорения движения по величине или направлению: в начале разгона руки и в конце разгона, в начале торможения и в конце торможения. Как говорят специалисты, деформация возникает под действием собственного кинематического возбуждения робота.
    Для уменьшения вредных последствий этого явления приходится принимать соответствующие меры: уменьшать массу, длину руки, добавлять ребра жесткости, как бы дополнительные "косточки скелета", ставить упорные подшипники с ограничителями и т. п.
    Необходимо учитывать также температурные деформации.
    Таким образом, точность позиционирования в один миллиметр, достигаемая у современных роботов с позиционной системой управления и длиной руки 1,5-2 метра (типа "Юнимейт"), является, по-видимому, максимально возможной. Тем не менее такая точность позиционирования в некоторых случаях может оказаться недостаточной. Так вот "чувства" позволяют по-новому решить такие задачи, используя иной принцип управления. И, что самое важное, такие адаптивные роботы могут оказаться при той же точности не дороже роботов первого поколения, поскольку задача точного измерения и отработки многих координат "вслепую" требует применения прецизионных датчиков положения со сложной измерительной системой, что само по себе довольно сложно и дорого.
    Известное достоинство и вместе с тем существенный недостаток роботов первого поколения - это удивительное постоянство, однообразие их движений, которое породило метафору "двигающийся как робот". Однако они отлично работают в постоянных, неизменных условиях. Но окружающая среда, в том числе и производственная, весьма динамична. И это, пожалуй, единственное ее постоянное качество.
    Если в процессе производства происходит любое, самое минимальное отклонение от заранее заданных условий (упало напряжение в электросети или упала деталь с конвейера), робот первого поколения оказывается беспомощным перед этим технологическим пустяком. В лучшем случае он остановится, разинув схват, как зевака рот. В худшем случае будет продолжать работать, тыкая своей пустой рукой в воздух и не замечая, что усилия его бесполезны. Он не может адаптироваться к изменению окружающей обстановки. Для успеха совместной работы окружающая обстановка вынуждена сама адаптироваться к роботу. Но тогда непонятно, кто кому служит. Робот производству или производство роботу?
    Может быть, это является причиной того парадоксального положения, при котором роботизированные комплексы, в которые вложены крупные государственные средства, оказываются "безработными" в силу малой надежности и слабой защиты от помех?
    Таким образом, появление более совершенных роботов второго поколения не просто процесс естественной смены поколений, как поколений ЭВМ. Эволюция роботов - это насущное требование жизни, это, если хотите, условие их "выживания" в динамично усложняющейся производственной среде. Робот второго поколения, как говорится, "и жить торопится и чувствовать спешит".
    Многие из возникающих в робототехнике проблем решаются проще, коль скоро мы снабдим нашего механического слепого если не полноценным зрением, то, по крайней мере, посохом, которым он может ощупывать дорогу.
    Итак, речь идет о повышении уровня интеллекта роботов, ибо "разумность" семейства их первого поколения оставляет желать лучшего. В сущности говоря, их интеллект не выше, чем у примитивного насекомого.
    Представьте себе, что на линии сборки автомобилей случается какой-нибудь перекос. Роботы этой ошибки не замечают. Их настроили на то, чтобы сверлить отверстия в дверце, а они сверлят теперь их в баке для горючего. То, что изделие установлено неправильно, их совершенно "не волнует". Кроме того, если в их электронной схеме произойдет сбой, автомат в "слепой ярости" начнет колотить своей мощной стальной лапой по чему попало. И здесь возникают уже совсем другие проблемы. Заменять человека на вредных и опасных работах - это одно, а самому быть источником опасности для человека - совсем иное.
    Как же обуздать вышедшего из подчинения "железного раба"? Как обеспечить стопроцентную безопасность рабочего в роботизированном цехе? Самый совершенный помощник не заслужил права быть источником травматизма. И хотя, конечно, робот работает автоматически, однако цеха не достигли еще такого технологического уровня, чтобы работа происходила совсем без наблюдения человека. В случае конфликтной ситуации любой механизм может "забарахлить", и тогда в зоне действия его руки должен оказаться рабочий-ремонтник.
    Что произойдет тогда?
    Манипулятор обязан остановиться сам, автоматически... Столкновение робота с человеком может оказаться для последнего трагическим. Недаром Япония, страна, занимающая первое место в мире по применению промышленных роботов, стала и первой страной, где промышленный робот убил человека. Погибшим стал 37-летний наладчик, который подошел к агрегату, чтобы проверить его работу, но был схвачен стальной рукой робота и сунут точно под резец. Владельцы завода и их эксперты обвинили в гибели самого рабочего, который должен был подходить к станку с определенной стороны, отключая робот.
    Для обеспечения безопасности в роботизированном цехе используются различные конструктивные решения: подпружиненные трапы на полу в рабочей зоне робота или соединенные с блокирующими выключателями ограждения, при открывании которых подается команда "стоп", ограждение зоны световым лучом. Вот, например, комплекс на основе робота Ум-160. Спроектирован он в Институте металлорежущих станков, а изготовлен на заводе "Станкоконструкция" для московского электромеханического объединения "Динамо". Световые лучи делят рабочую зону комплекса на "секции".
    Наладчик, подходя к станку, обязательно пересекает луч света, ограждающий одну из секций. Включается система защиты, и, если манипулятор находится в той же секции, он отключается; если он вне ее, то продолжает работу, но вход в защищаемую зону кому бы то ни было запрещен. Покинув световую ограду, наладчик дублирует пересечение луча специальной кнопкой, сообщая о снятии "охраны".
    Заметим, что робот, останавливающийся при появлении в рабочей зоне человека, - это уже не "слепец", но еще и не "зрячий". Простейшее очувствление зародилось еще в недрах первого поколения: робот останавливается, если в заданном месте, между пальцами схвата, не оказывается требуемой детали. Здесь все "богатство чувств" сводится к принципу "есть - нет".
    Простейшая адаптация к обстановке обеспечивает роботу большие физические возможности. Так, манипулятор фирмы "То кё Кэйки" распознавал габариты и вес детали и по-разному осуществлял их подъем: легкие, до десяти килограммов, поднимал на вытянутой руке, а тяжелые, до сорока килограммов, - на втянутой руке. Алгоритм "адаптации" заключается в следующем: захват объекта, определение веса, движение при втянутой или вытянутой руке.
    Кроме того, что робот, обладающий теми или иными чувствами, безопаснее, удобнее и точнее робота первого поколения, он обладает еще рядом специфических достоинств. Он может выполнять операции, которые и "не снились", если бы он мог видеть сны, роботу, лишенному чувств. Такие производственные обязанности, как операции с неориентированными изделиями переменной формы и размера или изделиями, движущимися по транспортеру, не могут быть выполнены без очувствления. Процедуры автоматической сборки также требуют, чтобы робот чувствовал усилия, с которыми вгоняется, например, болт в отверстие, иначе или отверстие, или болт может оказаться поврежденным; чтобы робот видел, куда нужно загнать щетку электромотора и почему она туда не входит. Казалось бы, проблема проста: создать аналог человеческого глаза - и порядок.
    Но как раз этот-то "порядок" и недостижим на сегодняшний день. А если и достижим, то обходится он чрезвычайно дорого. Поэтому вместо полноценного оптического зрения роботы активно используют всяческие его "суррогаты", которые еще не слишком дороги, но уже достаточно эффективны.
    Вот пример: нужно "выловить" одну деталь из целой кучи ей подобных. Тут, казалось бы, без зрения не обойтись, но вот как научили это делать робота в Институте проблем передачи информации АН СССР.
    В ящик с заготовками рука робота погружала электромагнит. Датчик сигнализировал о контакте магнита с содержимым ящика, после чего в обмотку магнита подавался ток. Затем рука поднималась с целой "гроздью" притянутых деталей, система управления анализировала вес "грозди" и постепенно уменьшала ток в обмотке. "Гроздь" рассыпалась, на магните держалась только одна деталь. Ток снова увеличивался, и рука переносила надежно "схваченный" предмет.
    ШЕСТОЕ ЧУВСТВО
    Всем известны слова "шестое чувство", часто характеризующие что-то вроде интуиции или предчувствия.
    Употребляется это словосочетание в тексте примерно следующего содержания: "И тут какое-то шестое чувство подсказало мне (ему)..." дальше описывается,что подсказало чувство. Это выражение пошло от известного факта, что число чувств человека равно пяти: зрение, слух, осязание, обоняние, вкус. Однако человек чувствует, несомненно, больше: чувство равновесия, чувство времени, веса (правда, довольно грубые). Мы ощущаем тепло на расстоянии. Что это? Осязание? Вообще-то да, но тогда почему на расстоянии? Человек чувствует чужой взгляд, чувствует, как меняется давление, аллергик "чувствует" присутствие аллергена и т. п. Так что разнообразных "шестых" чувств предостаточно.
    Однако человек имеет, прямо скажем, весьма ограниченный чувствительный аппарат. Окружающая нас живая природа может предоставить гораздо более широкий перечень разнообразнейших чувствительных элементов. Это системы акустического видения дельфинов, ультразвуковые локаторы летучей мыши, тепловое видение змей, умение некоторых животных ориентироваться в электростатических, электромагнитных, тепловых, ультрафиолетовых и других полях. Например, у собак почти фантастический нюх, крысы слышат ультразвук, змеи чувствительны к вибрации и т. п.
    Как научить робота хотя бы малой толике этого богатства? Не будем отчаиваться, современные очувствленные роботы обладают не меньшей гаммой чувствительных элементов, не все из них позаимствованы у природы, есть и собственные "патенты" человека.
    Чувствительные элементы роботов называются датчиками. Датчики промышленных роботов можно разделить на два больших класса: внутренние и внешние.
    Первые предназначены для контроля за функционированием самих роботов. Они устанавливаются в приводах исполнительных механизмов. Вторые предназначены для контроля за состоянием тех объектов, с которыми работают промышленные роботы. С помощью этих датчиков определяется положение, форма и другие характеристики детали, заготовки, готового узла.
    Датчики внутренней информации - своеобразный самоконтроль робота, предназначенный для определения положений, углов поворота, скоростей и моментов руки, кисти, плеча и других механизмов. Человек тоже обладает подобной чувствительностью. Закрыв глаза, на основании одних только мышечных ощущений мы можем не только принять любую позу или сделать нужный жест, но и совершить более сложные манипуляции, например переставить телефон с тумбочки на стол.
    Если управление роботом осуществляется на основе предельных выключателей по принципу "включено - выключено", то сами выключатели и являются такими внутренними датчиками: довел робот руку до положения, в котором выключатель сработал, значит, нужная фаза движения реализована. В более сложных случаях здесь используются сервомеханизмы с обратной связью: потенциометры, сельсины, резольверы, аналогоцифровые преобразователи и т. п.
    Датчики положения руки робота в большинстве случаев устроены так, что преобразуют разнообразные перемещения в электрические импульсы. Эти-то "нервные" импульсы и делают робота "чувственным". Датчиков у робота целая куча: электромагнитные, емкостные, индуктивные, резистивные (на сопротивлениях), фотоэлектрические. Работа, например, потенциометра основана на изменении сопротивления проволоки или пленки при изменении угла поворота. Надежность потенциометра из-за наличия контакта, как правило, невысокая: максимальный срок службы около двух миллионов оборотов. В конструкции сельсина используется принцип работы трансформатора. Первичная обмотка питается однофазным напряжением. Напряжение, индуцированное во вторичной обмотке, определяется углом поворота.
    Сельсин как бесконтактное устройство, основанное на принципе электромагнитной индукции, обладает высокой надежностью, помехоустойчивостью, однако точность сельсинов ограничена значением в полградуса.
    Резольверы были разработаны позднее сельсинов и основаны на тех же принципах. Однако на статоре и роторе резольвера располагаются по две обмотки, сдвинутые на 90 градусов друг относительно друга. Отсюда и точность у резольверов больше, чем у сельсинов. Индуктивные датчики устроены так же, как и сельсины, только здесь в электрическое напряжение преобразуется линейное напряжение вторичной обмотки относительно первичной. Точность такого датчика порядка одного миллиметра.
    Аналогоцифровые преобразователи представлены генератором импульсов. В фотоэлектрических генераторах на дисках, соединенных с осью вращения, имеются прозрачные и непрозрачные участки. В качестве источников света используются лампы или другие элементы, а в качестве регистрирующих элементов - фототранзисторы, гелиевые элементы и другие устройства. Имеются генераторы, основанные на принципе информации с разрешающей способностью до нескольких тысяч импульсов на один оборот. Существует много датчиков счеточного типа, где значениям 1 и 0 соответствуют проводящие и изолированные участки кодовых пластин.
    Наличие контакта обусловливает определенное ограничение долговечности.
    Существует и масса других датчиков. Например, датчики, интегрирующие скорость, подобно электродвигателям, магнитные счетчики и т. п. Большинство из этих датчиков самоконтроля роботов зародилось еще в недрах первого поколения, это благодаря им удается повысить точность позиционирования и обеспечить "деликатное" обращение с хрупкими, сыпучими и "текучими" грузами.
    Разумеется, при переходе ко второму поколению эти внутренние "чувства" робота расцвели пышно и многообразно, однако главное внимание чувствительного аппарата второго поколения роботов направлено вовне, туда, где кипит производственная жизнь.
    Среди наиболее простых и наиболее распространенных датчиков внешней информации можно отметить так называемые "контактные" датчики - осязание промышленного робота. На концах схвата - руки робота устанавливаются специальные выключатели, которые фиксируют факт прикосновения к детали или станку и посылают импульс в "мозг" робота. Десяток таких выключателей, расположенных не только внутри пальцев схвата, но и на наружной его поверхности (сверху, снизу, справа и слева), помогают роботу "на ощупь" определить положение детали или возникшего препятствия.
    "Я дотронулся правым датчиком до заготовки, значит, она справа, "соображает" робот, - передвину-ка я руку поправее, теперь дотронулся левым, значит, многовато, примерно половину пути назад будет в самый раз" - так "рассуждает" робот, на ощупь ориентируясь в рабочей зоне.
    Однако человек, манипулируя с предметом, фиксирует не только факт соприкосновения, но и ощущает давление руки на предмет через кожу и таким образом может регулировать усилие сжатия соответственно весу и прочности предмета (вспомним бумажный стаканчик). Такой датчик представляет собой, например, слой электропроводящего вспененного полиуретана, заключенного между тонкими металлическими пластинами. В зависимости от давления расстояние между пластинами меняется и соответственно изменяется электрическое сопротивление цепи. Эти свойства искусственной чувствительной кожи уже используются в области протезирования. Механизм управления силой сжатия руки с обратной связью по давлению предотвращает повреждение предмета и самой искусственной руки.
    Среди датчиков особенно удобны бесконтактные: оптические, электромагнитные, ультразвуковые, струйные, так как из-за отсутствия непосредственного соприкосновения не приходится бояться ударов об объект или плохого контакта, кроме того, они "чувствуют" предмет заранее, и в этом их основное преимущество. Они фиксируют объект до непосредственного соприкосновения - и это уже "замашки" своеобразного зрения роботов.
    Электромагнитные контактные датчики работают на расстоянии от нескольких миллиметров до нескольких сантиметров. В них используется эффект изменения сопротивления магнитной цепи или изменения импеданса катушки при прохождении магнитного или электрического поля через объект. Они обладают высокой точностью и надежностью, однако взаимодействуют, естественно, лишь с металлическими предметами.
    Куда более похожи на зрение оптические датчики.
    Если в качестве источников света использовать лампы, светодиоды, а в качестве светоприемников - фотоэлементы, фотодиоды, фототранзисторы, то для обнаружения детали и определения ее положения можно использовать пересечение объектом светового потока или световой импульс, отраженный от предмета. Этот несложный "глаз" состоит из двух линзочек, за которыми прячутся светодиод и фотодиод. Обе линзы сфокусированы на одну точку, расположенную в нескольких десятках миллиметров. Фотодиод не уловит сигнала светодиода, пока в этой точке не окажется какой-нибудь поверхности. Чтобы датчик не реагировал на внешнюю засветку, светодиод излучает свет с определенной частотой, на которую настроен и фотодиод.
    Ультразвуковые датчики представляют собой систему, состоящую из передатчика и приемника сигналов.
    С помощью отраженного звукового сигнала можно обнаруживать объекты и измерять расстояние до них.
    Ультразвуковые датчики имеют по сравнению с оптическими следующие преимущества: они могут обнаруживать прозрачные объекты, в том числе и неметаллические; срок службы генератора колебаний практически не ограничен; их показания не зависят от освещения; их можно использовать на открытом воздухе и при наличии помех: на них не оказывают значительного влияния пыль, пар и другие факторы среды; измерения с ними можно проводить под водой и т. д.
    Принцип действия датчика заключается в акустической локации пространства вблизи захвата. Посланные датчиком ультразвуковые импульсы отражаются от ближайшего предмета, и измерение времени между посылкой импульса и приходом отраженного сигнала позволяет со сравнительно большой точностью судить о расстоянии от предмета до захвата. Особенностью такого устройства является применение в качестве излучателя п приемника одного и того же обратимого преобразователя, разработанного специально для этих целей и представляющего собой разновидность конденсаторного микрофона.
    Ультразвуковые датчики, помимо измерения расстояния, позволяют решать и более хитрые задачи, например, точного наведения оси схвата на предмет. Если на каждом пальце схвата поместить по одинаковому датчику, то они образуют уже два глаза - "симметричную стереопару", и при равенстве расстояний обоих датчиков до детали происходит совмещение оси схвата с осью предмета. Это полезное свойство применимо, однако, лишь для предметов правильной формы.
    К сожалению, ультразвуковые датчики обладают ограниченной способностью для обнаружения микроскопически малых тел, что связано с относительно большой длиной ультразвуковых волн.
    Существует подход, при котором воздушную струю можно использовать подобно пучр:у света. Этот датчик можно применять как своеобразный бесконтактный выключатель. Таким образом, можно измерять расстояние, превышающее диаметр сопла примерно в пятьдесят раз.
    При измерении расстояния до движущихся объектов получаются несколько завышенные значения вследствие завихрений воздуха вокруг самих объектов. Чувствительность струйных датчиков может быть даже выше, чем оптических.
    Тактильные, оптические, ультразвуковые, струйные- это лишь малая толика используемых датчиков робота. Так же, как схваты, чувства робота ориентированы на тип производимой работы. Кое-где достаточно осязания, в другом процессе не обойтись без примитивного зрения, в третьем - нужны "нежные струи" воздушных датчиков. Иногда необходим и инфракрасный локатор, весьма перспективно и лазерное "зрение". Если писать обо всем подробно, то каждое из перспективных направлений очувствления заслужило бы по отдельной книжке. Нам же не терпится посмотреть на очувствленного робота.
    В особом конструкторском бюро технической кибернетики Ленинградского политехнического института имени М. И. Калинина проводят экспериментальную проверку возможностей промышленных роботов, оснащенных целой гаммой чувствительных датчиков.
    Захват одного из роботов представляет собой лапу с двумя пальцами, на внешней поверхности которых расположено целое поле тактильных датчиков, представляющих собой подпружиненные металлические пластины. Набор датчиков выполнен в виде "рыбьей чешуи", что позволяет покрыть всю поверхность пальца, практически без нечувствительных зон. На каждом пальце размещено по 12 таких датчиков, так что прикосновение к любому участку поверхности пальца приводит к замыканию соответствующего контакта, связанного с подвижной пластиной датчика, и информация о месте прикосновения передается в систему управления роботом.
    Кроме контактных тактильных датчиков осязания, на пальцах захвата размещены двенадцать светолокационных датчиков, которые сигнализируют о приближении захвата к предмету на расстоянии двух-трех сантиметров. Они расположены на концах пальцев, на боковой и торцевой поверхностях.
    Так как работа светолокационного датчика основана на обнаружении светового потока, отраженного от предмета, то для исключения влияния внешнего освещения на работу датчика используется специальным образом модулированный по интенсивности световой поток.
    В процессе работы робота возникает необходимость получать сведения не только о приближении или прикосновении к предмету, но и о наличии предмета внутри захвата между пальцами. Для этого на внутренней поверхности пальцев размещены еще четыре фотодатчика, работающих не на отраженном свете, а на прямом просвечивании межпальцевого пространства. Они позволяют контролировать наличие предмета между губками, а также ориентировочно судить о положении предмета по количеству перекрываемых лучей. Столь мощное очувствление дает роботу второго поколения невиданные доселе возможности поиска предметов, нежного обращения с деталями, сборки разнообразных и непростых конструкций. Для примера перечислим операции, выполняемые двуруким роботом второго поколения с тактильным очувствлением, который был разработан с целью исследования методов координированного управления двумя руками при их совместной работе. Робот выполняет следующие операции:
    - перемещение предметов, которые нельзя взять одной рукой, обеими руками с переворотом в процессе перемещения;
    - перенос трех деталей прямоугольной формы, при этом средняя удерживается благодаря силе сжатия со стороны боковых;
    - сверление ручным коловоротом; одна рука нажимает коловорот, а вторая вращает его;
    - вычерчивание линий по лекалу, удерживаемому другой рукой;
    - свинчивание болта и гайки; одна рука держит гайку, а другая головку болта и вращает ее, перехватывая;
    - сборка узла из двух деталей, соединяемых болтом и гайкой, и др.
    Все эти процессы обеспечиваются тонкой координацией действий обеих рук робота по сигналам тактильных датчиков. При этом в процессе выполнения одна рука выполняет роль ведущей, а вторая отслеживает ее положение.
    Этот метод управления, названный авторами методом вертуального эталона, как раз и исследовался на разработанном роботе.
    КАК МЫ ВИДИМ ТО, ЧТО МЫ ВИДИМ
    Органом зрения мы издавна привыкли считать глаз.
    Однако, чтобы установить истину, нам придется отказаться от этого заблуждения. Человек видит отнюдь не глазами. А чем же, спросит недоуменный читатель, датчиками, что ли? Нет, человек видит мозгом! Действительно, глаз участвует в процессе видения, однако распознавание зрительных картин настолько тонкий и интеллектуальный процесс, что сказать "мы видим глазами" так же наивно, как "мы говорим языком".
    Посмотрите вокруг. Мы видим разноцветные пятна на пестром фоне, и только мозг сообщает нам, что это деревья, дома и осенняя листва на мостовой.
    Чтобы научиться видеть, человек затрачивает несколько лет жизни. Рассмотреть фотографию не так-то просто, нужно научиться воспринимать цветное объемное изображение в виде плоскостного предмета, заполненного серо-белыми пятнышками. Индейцу одного из американских племен показали фотографию животного, которое он встречал каждый день, - лошади. Он увидел в изображении нечто таинственное и бесконечно далекое от данного животного.
    "Из всех органов чувств, связывающих наше сознание с внешним миром, зрение является важнейшим, ибо оно дает 80-90 процентов информации об окружающей нас действительности, - говорит заведующая кафедрой глазных болезней Новосибирского медицинского института, доцент Н. Орлова. - Где бы мы ни были - у себя дома, на улице, на рабочем месте, на отдыхе, - весь период бодрствования человек совершает колоссальную зрительную работу. Он рассматривает форму и детали предмета - это центральное зрение; ориентируется в пространстве - это периферическое зрение; воспринимает различную освещенность - светоощущение; распознает спектральный состав света, что создает впечатление многоцветности мира; фокусирует рассматриваемый объект; определяет расстояние до предметов и между ними, что дает впечатление глубины, стереоскопичности. И все это одномоментно и связно - воистину неоценимая деятельность. Глаза приспособлены к видению даже при ничтожно слабом свете - ночью. Кроме того, глаз, как и сердце, успевает отдохнуть в процессе работы, во время коротких миганий".
    Как научить робота "видеть"? У нас нет нужды приделывать ему "голову с глазами". Глаз мы можем поместить, например, на потолке, а затем сообщать роботу название и форму детали, и он будет собирать их.
    В другом варианте мы могли бы поместить глаз робота ему на "ладонь".
    Допустим, что при сварке различных конструкций робог должен помещать их металлические части в разные положения. Если его "глаз" расположен на "ладони", автомат сам сможет "видеть", где именно и как должна происходить сварка. Есть проект робота - упаковщика шоколада. Сейчас на обычной шоколадной фабрике работницы сидят за столом, а перед ними движется поток пустых коробок. Шоколадки подаются конвейерной линией. Работницы укладывают их в коробки по две штуки в секунду. Планируется установить у линии два небольших манипулятора и телекамеру. Камера будет сообщать манипуляторам, что делать их "пальцам" для укладки шоколадок. В данном случае у манипуляторов есть некое зачаточное "зрение". Но это крайне упрощенный случай - темные шоколадки на светлом фоне. Если сказать такому роботу: "Прошу тебя пойти и собрать букет белых лилий", для него невозможно было бы выполнить столь сложный приказ.
    До настоящего времени оснащение зрением какоголибо устройства из металла требовало талантов поистине нечеловеческих. Однако усовершенствование технологии компьютеров радикальным образом изменило ситуацию. Разработка видеосистем для роботов началась с создания телекамер. Изображение объекта превращается в тысячи точек, из которых состоит телевизионное изображение. Эти черные и белые точки вводятся в ЭВМ, управляющую роботом, в виде цифровой информации в двоичном коде (0,1). Черную точку отображает единица, белую - ноль. Изображение предмета преобразуется в электронной памяти компьютера в серию нолей и единиц. Теперь робот может "увидеть" предмет, то есть сравнить его цифровую кодограмму с набором цифр, хранящихся в памяти, и "узнать" его, то есть определить, к классу каких объектов он относится.
    Там, где нули переходят в единицы, компьютер отмечает силуэт объекта и его ориентацию. После этого он немедленно вычисляет многие из его характеристик, например площадь, периметр, диаметр и т. д., и сравнивает их с характеристиками объекта, хранящимися в его памяти. Когда ЭВМ отыщет в своей памяти подобный набор цифр, робот узнает, что же он видит перед собой.
    Сказав на электронном языке "агаЬ, он даст команду своим "пальцам" сделать с предметом то, что нужно, например схватить за край, поднять и перевернуть.
    Поскольку робот не может различать многочисленные оттенки серого цвета, необходимо высококонтрастное освещение, а как его осуществить для изделий, движущихся на сборочном конвейере?
    Сейчас разрабатываются более совершенные системы, которые будут различать много оттенков яркости.
    Создаются приборы, способные формировать изображение с помощью так называемой "серой шкалы", где яркость может быть выражена в диапазоне величин от О до 15 или даже от 0 до 255. С такими "способностями" компьютер сможет различить малейшие изменения яркости и обеспечить точное опознавание объектов. Однако системы с "серой шкалой" столь сложны, что время распознавания даже для мощной ЭВМ оказывается очень большим. Если имеется сотня уровней "серости" в широком поле зрения, то для распознавания образца компьютер должен выполнить огромное количество вычислений, и чем беспорядочней и хаотичней "сцена",тем сложнее задача ЭВМ. Таким образом, будущее систем со "прением" зависит как от продолжающегося прогресса в компьютерной технике, так и от создания лучших устройств распознавания.
    Однако, чтобы быть таким же эффективным, как человеческий глаз, "глаз" робота должен опираться па соответствующий интеллект компьютера, который работает в миллион раз быстрее, чем любой из современных.
    И хотя некоторым ученым это не кажется фантастнчным, особенно учитывая головокружительный прогресс микроэлектроники, даже современное состояние вычислительной техники позволяет делать весьма оптимистические прогнозы. В конце концов робот может "видеть" гораздо лучше человека и сегодня, ведь человеческому глазу доступна для восприятия лишь оптическая часть спектра электромагнитных волн. А соответствующее электронное устройство свободно от биологическ
    Стр. 1 : Страница 2 : Стр. 3 : Стр. 4 : Стр. 5 : Стр. 6 : Стр. 7 : Стр. 8 : Стр. 9 :

    Ключевые слова:
    роботы
    управления
    поколения
    человек
    производства
    системы движения
    работы
    детали
    компьютер
    устройства
    машина
    система
    ВДНХ робот
    Книги о роботах
    робот


    Вернуться в рубрику:

    Книги и рассказы про роботов


    Хотите видеть на нашем сайте больше статей? Кликните Поделиться в социальных сетях! Спасибо!

    Смотрите также:

    Обратите внимание полезная информация.

    Робототехника для каждого. 2024г.